具有干摩擦的双弹簧振子的全局动力学
Global Dynamics of Double-Spring Oscillators with Dry Friction
DOI: 10.12677/AAM.2025.142064, PDF,    科研立项经费支持
作者: 毛睿婕:长沙理工大学数学与统计学院,湖南 长沙
关键词: 干摩擦弹簧振子Filippov系统Lyapunov函数LaSalle不变原理Dry Friction Spring Oscillator Filippov System Lyapunov Functions LaSalle Invariant Principle
摘要: 本文研究了一类具有干摩擦的双弹簧振子模型的全局动力学。首先,根据牛顿第二定律建立具有 干摩擦的双弹簧振子模型的微分方程,求得系统的平衡点。接下来, 通过 Filippov 理论证明了系 统存在一个平衡点集或三个平衡点集。 然后,再根据非光滑的 Lyapunov 函数和集值导数以及 LaSalle 不变原理等相关理论讨论了不同情况下平衡点集的渐近稳定性。最后,绘制分岔图分析了 系统的分岔情况,并选取合适的参数进行数值模拟验证结论。
Abstract: In this paper, the global dynamics of a class of double-spring oscillator model with dry friction is studied. Firstly, according to Newton’s second law, the differential equation of the double-spring oscillator model with dry friction is established to obtain the equilibrium point of the system. Next, the Filippov correlation theory proves that there is one equilibrium set or three equilibrium sets in the system. Then, the asymptotic stability of the equilibrium set in different cases is discussed according to the non-smooth Lyapunov function, the set-valued derivative and LaSalle’s invariant principle. Finally, the bifurcation diagram is drawn to analyze the bifurcation of the system, and the appropriate parameters are selected for numerical simulation to verify the conclusion.
文章引用:毛睿婕. 具有干摩擦的双弹簧振子的全局动力学[J]. 应用数学进展, 2025, 14(2): 202-216. https://doi.org/10.12677/AAM.2025.142064

参考文献

[1] 谢建华, 乐源, 李登辉. 非线性动力学[M]. 北京: 科学出版社, 2018.
[2] Zhuravlev, V.F. (2010) History of the Law of Dry Friction. Doklady Physics, 55, 344-345.
https://doi.org/10.1134/s1028335810070086
[3] 徐世浩, 张雄. 弹簧振子在光滑水平面内的运动规律[J]. 大学物理, 2020, 39(5): 52-57, 69.
[4] Abdullah, M., Rahmayanti, H.D., Yuliza, E. and Munir, R. (2023) The Stable and Unstable Oscillations of a Rod Attached to Many Springs. European Journal of Physics, 44, Article 055004.
https://doi.org/10.1088/1361-6404/acdb0f
[5] Beatty, M.F. (2009) Small Longitudinal Oscillations of a Load on an Incompressible, Isotropic Limited Elastic Spring. International Journal of Engineering Science, 47, 1110-1118.
https://doi.org/10.1016/j.ijengsci.2008.06.009
[6] Chen, H. and Xie, J. (2016) Harmonic and Subharmonic Solutions of the SD Oscillator. Non- linear Dynamics, 84, 2477-2486.
https://doi.org/10.1007/s11071-016-2659-7
[7] Chen, H., Tang, Y. and Wang, Z. (2022) The Discontinuous Limit Case of an Archetypal Oscil- lator with a Constant Excitation and Van Der Pol Damping. Physica D: Nonlinear Phenomena, 438, Article 133362.
https://doi.org/10.1016/j.physd.2022.133362
[8] Wang, J., Huang, W. and Huang, L. (2023) Global Dynamics and Bifurcation for a Dis- continuous Oscillator with Irrational Nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 119, Article 107073.
https://doi.org/10.1016/j.cnsns.2022.107073
[9] Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C. and Thompson, J.M.T. (2008) The Limit Case Response of the Archetypal Oscillator for Smooth and Discontinuous Dynamics. International Journal of Non-Linear Mechanics, 43, 462-473.
https://doi.org/10.1016/j.ijnonlinmec.2008.01.003
[10] Li, Z., Cao, Q. and L´eger, A. (2015) The Equilibrium Stability for a Smooth and Discontinuous Oscillator with Dry Friction. Acta Mechanica Sinica, 32, 309-319.
https://doi.org/10.1007/s10409-015-0481-y
[11] Han, N., Cao, Q.J. and Wiercigroch, M. (2013) Estimation of Chaotic Thresholds for the Recently Proposed Rotating Pendulum. International Journal of Bifurcation and Chaos, 23, Article 1350074.
https://doi.org/10.1142/s0218127413500740
[12] Filippov, A.F. (1964) Differential Equations with Discontinuous Right-Hand Side. Kluwer A- cademic Publishers.
[13] 黄立宏, 郭振远, 王佳伏. 右端不连续微分方程理论与应用[M]. 北京: 科学出版社, 2011.
[14] 黄立宏, 王佳伏. 右端不连续微分方程模型及其动力学分析[M]. 北京: 科学出版社, 2021.
[15] Buzzi, C.A., de Carvalho, T. and da Silva, P.R. (2013) Closed Poly-Trajectories and Poincar´e Index of Non-Smooth Vector Fields on the Plane. Journal of Dynamical and ControlSystems, 19, 173-193.
https://doi.org/10.1007/s10883-013-9169-4
[16] Bacciotti, A. and Ceragioli, F. (1999) Stability and Stabilization of Discontinuous Systems and Nonsmooth Lyapunov Functions. ESAIM: Control, Optimisation and Calculus of Variations, 4, 361-376.
https://doi.org/10.1051/cocv:1999113