|
[1]
|
Graham, C.R., Jenne, R., Mason, L.J. and Sparling, G.A.J. (1992) Conformally Invariant Powers of the Laplacian, I: Existence. Journal of the London Mathematical Society, 2, 557- 565. [Google Scholar] [CrossRef]
|
|
[2]
|
Chang, S.A. and Yang, P.C. (1997) On Uniqueness of Solutions of n-th Order Differential Equations in Conformal Geometry. Mathematical Research Letters, 4, 91-102. [Google Scholar] [CrossRef]
|
|
[3]
|
Graham, C.R., Jenne, R., Mason, L.J. and Sparling, G.A.J. (1992) Conformally Invariant Powers of the Laplacian, I: Existence. Journal of the London Mathematical Society, 2, 557- 565. [Google Scholar] [CrossRef]
|
|
[4]
|
Chen, W. and Li, C. (1991) Classification of Solutions of Some Nonlinear Elliptic Equations. Duke Mathematical Journal, 63, 615-622. [Google Scholar] [CrossRef]
|
|
[5]
|
Lin, C.-S. (1998) A Classification of Solutions of a Conformally Invariant Fourth Order Equa- tion in Rn. Commentarii Mathematici Helvetici, 73, 206-231. [Google Scholar] [CrossRef]
|
|
[6]
|
Martinazzi, L. (2008) Classification of Solutions to the Higher Order Liouville’s Equation on R2m. Mathematische Zeitschrift, 263, 307-329. [Google Scholar] [CrossRef]
|
|
[7]
|
Wei, J. and Ye, D. (2008) Nonradial Solutions for a Conformally Invariant Fourth Order Equation in R4. Calculus of Variations and Partial Differential Equations, 32, 373-386. [Google Scholar] [CrossRef]
|
|
[8]
|
Wei, J. and Xu, X. (1999) Classification of Solutions of Higher Order Conformally Invariant Equations. Mathematische Annalen, 313, 207-228. [Google Scholar] [CrossRef]
|
|
[9]
|
Goldberg, S.I. (1977) A Uniqueness Theorem for Surfaces in the Large. Hokkaido Mathematical Journal, 6, 28-30.
|
|
[10]
|
Guo, Z., Huang, X. and Zhou, F. (2015) Radial Symmetry of Entire Solutions of a Bi-Harmonic Equation with Exponential Nonlinearity. Journal of Functional Analysis, 268, 1972-2004. [Google Scholar] [CrossRef]
|