图的积和多项式与匹配多项式的关系
The Relationship between the Permanental Polynomial and theMatching Polynomial of Graphs
DOI: 10.12677/pm.2025.154142, PDF,    科研立项经费支持
作者: 张文伟:青海民族大学数学与统计学院,青海 西宁
关键词: 补图积和多项式匹配多项式Complement Graph Permanental Polynomial Matching Polynomial
摘要: 令G是一个简单图,A(G)为图G的邻接矩阵.那么矩阵A(G)的永久和记为PS(A(G)),矩阵A(G)的积和多项式记为per(xI-A(G)).在本文中, 我们利用匹配多项式及其补图之间的相互关系,证明了图的积和多项式与其补图匹配多项式之间的关系;并且通过这个我们推导出了几乎完全图的永久和与其补图匹配数之间的具体关系.
Abstract: Let G be a simple graph, and A(G) be the adjacency matrix of graph G. The permanent sum of matrix A(G) is denoted as P S(A(G)), and the permanental polynomial of matrix A(G) is denoted as per(xI − A(G)). In this paper, we utilize the interrelation between the matching polynomial and its complement graph to demonstrate the relationship between the permanental polynomial of a graph and the matching polynomial of its complement graph. Furthermore, through this approach, we deduce the specific re-lationship between the permanent sum of already complete graphs and the matching number of their complement graphs.
文章引用:张文伟. 图的积和多项式与匹配多项式的关系[J]. 理论数学, 2025, 15(4): 409-418. https://doi.org/10.12677/pm.2025.154142

参考文献

[1] Valiant, L.G. (1979) The Complexity of Computing the Permanent. Theoretical Computer Science, 8, 189-201. https://doi.org/10.1016/0304-3975(79)90044-6
[2] Harary, F. (1969) Determinants, Permanents and Bipartite Graphs. Mathematics Magazine, 42, 146-148.
https://doi.org/10.1080/0025570x.1969.11975950
[3] Minc, H. (1978) Permanents. Addison-Wesley.
[4] Merris, R., Rebman, K.R. and Watkins, W. (1981) Permanental Polynomials of Graphs. Linear Algebra and its Applications, 38, 273-288.
https://doi.org/10.1016/0024-3795(81)90026-4
[5] Kasum, D., Trinajsti, N. and Gutman, I. (1981) Chemical Graph Theory. III. On the Permanental Polynomial. Croatica Chemica Acta, 54, 321-328.
[6] Borowiecki, M. and J_´zwiak, T. (1982) Computing the Permanental Polynomial of a Multigraph. Discussiones Mathematicae, 5, 9-16.
[7] Wu, T. and Zhang, H. (2015) Some Analytical Properties of the Permanental Polynomial of a Graph. Ars Combinatoria, CXIII, 261-267.
[8] Chou, Q., Liang, H. and Bai, F. (2015) Computing the Permanental Polynomial of the High Level Fullerene C70 with High Precision. MATCH Communications in Mathematical and in Computer Chemistry, 73, 327-336.
[9] Li, W. (2021) On the Matching and Permanental Polynomials of Graphs. Discrete Applied Mathematics, 302, 16-23.
https://doi.org/10.1016/j.dam.2021.05.030
[10] LovSsz, L. (2007) Combinatorial Problems and Exercises. Vol. 361, American Mathematical Society.
https://doi.org/10.1090/chel/361
[11] 马海成. 图的匹配多项式及其应用[M]. 北京: 科学出版社, 2019: 12.
[12] Wu, T. and So, W. (2021) Permanental Sums of Graphs of Extreme Sizes. Discrete Mathematics, 344, 112353. Article
https://doi.org/10.1016/j.disc.2021.112353