小顶点树的拉普拉斯积和式及比率
The Laplacian Permanent and Ratio of Small Vertex Trees
DOI: 10.12677/pm.2025.154143, PDF,    科研立项经费支持
作者: 王秀红:青海民族大学数学与统计学院,青海 西宁
关键词: 拉普拉斯矩阵积和式拉普拉斯比率Laplacian Matrices Permanents Laplacian Ratios
摘要: 对于一个图G,若其连通且无圈,我们就称G是一棵树,记为T。本文计算小顶点树的拉普拉斯矩阵积和式以及拉普拉斯比率,并且得到一些限定参数的大小的结果。
Abstract: For a graph G, if it is connected and acyclic, we call G a tree, denoted as T. In this paper, the permanents of the Laplacian matrices and the Laplacian ratios of small-vertex trees are calculated, and some results on limiting the magnitudes of certain parameters are obtained.
文章引用:王秀红. 小顶点树的拉普拉斯积和式及比率[J]. 理论数学, 2025, 15(4): 419-429. https://doi.org/10.12677/pm.2025.154143

参考文献

[1] Valiant, L.G. (1979) The Complexity of Computing the Permanent. Theoretical Computer Science, 8, 189-201.
https://doi.org/10.1016/0304-3975(79)90044-6
[2] van Dam, E.R. and Haemers, W.H. (2003) Which Graphs Are Determined by Their Spectrum? Linear Algebra and its Applications, 373, 241-272.
https://doi.org/10.1016/s0024-3795(03)00483-x
[3] Cvetkovic, D. (2005) Signless Laplacians and Line Graphs. Bulletin: Classe des Sciences Math-ematiques et Natturalles, 131, 85-92.
https://doi.org/10.2298/bmat0530085c
[4] Cvetkovi´c, D., Rowlinson, P. and Simi´c, S.K. (2007) Signless Laplacians of Finite Graphs. Linear Algebra and Its Applications, 423, 155-171.
https://doi.org/10.1016/j.laa.2007.01.009
[5] Cvetkovic, D., Rowlinson, P. and Simic, S. (2004) Spectral Generalizations of Line Graphs. On Graphs with Least Eigenvalue-2. Cambridge University Press.
https://doi.org/10.1017/cbo9780511751752
[6] Haemers, W.H. and Spence, E. (2004) Enumeration of Cospectral Graphs. European Journal of Combinatorics, 25, 199-211.
https://doi.org/10.1016/s0195-6698(03)00100-8
[7] Cash, G.G. and Gutman, I. (2004) The Laplacian Permanental Polynomial: Formulas and Algorithms. MATCH Communications in Mathematical and in Computer Chemistry, 51, 129- 136.
[8] Liu, S. (2019) On the (Signless) Laplacian Permanental Polynomials of Graphs. Graphs and Combinatorics, 35, 787-803.
https://doi.org/10.1007/s00373-019-02033-2
[9] Brualdi, R.A. and Goldwasser, J.L. (1984) Permanent of the Laplacian Matrix of Trees and Bipartite Graphs. Discrete Mathematics, 48, 1-21.
https://doi.org/10.1016/0012-365x(84)90127-4
[10] Goldwasser, J.L. (1986) Permanent of the Laplacian Matrix of Trees with a Given Matching. Discrete Mathematics, 61, 197-212.
https://doi.org/10.1016/0012-365x(86)90091-9
[11] Wu, T. and So, W. (2021) Permanental Sums of Graphs of Extreme Sizes. Discrete Mathe-matics, 344, Article 112353.
https://doi.org/10.1016/j.disc.2021.112353
[12] Brouwer, A.E. and Haemers, W.H. (2011) Spectra of Graphs. Springer Science Business Media.