一元多项式环与中国剩余定理
Monadic Polynomial Ring and the Chinese Remainder Theorem
DOI: 10.12677/pm.2025.154144, PDF,    国家自然科学基金支持
作者: 王传夷, 刘雨喆*:贵州大学数学与统计学院,贵州 贵阳
关键词: 一元多项式环的表示模同态基本定理互素辗转相除法Rings Representations of Monadic Polynomial Rings Homomorphism Theorem Co-prime Euclidean Algorithm
摘要: 本文对一般环R上的一元多项式环R[x]展开了研究.首先, 本文引入了R[x]中的一元多项式之间左(或右) 带余除法以及左(或右)辗转相除法,并给出了两个多项式能够进行左(或右)带余除法以及左(或右)辗转相除法的条件. 其次, 本文通过左(或右)辗转相除法引入了一元多项式有序对(f(x),g(x))伪互素这一概念,并证明了伪互素蕴含了理想的互素.再者, 利用伪互素的概念, 本文在非交换一元多项式环R[x]证明了一类左R[x]-模同态ϕΠ的存在性.在本文的最后部分, 我们提供了一个关于ϕΠ的理论应用,并指出ϕΠ在R为交换幺环的情况下就是R[x]上的中国剩余定理.
Abstract: This paper conducts a study on the monadic polynomial ring R[x] over a ring R. First of all, we introduce the left (or right) division with remainder and the left (or right) Euclidean algorithm between two univariate polynomials in R[x], and provide a condi-tion under which two polynomials can perform left (or right) division with remainder and left (or right) Euclidean algorithm. Secondly, by utilizing the left (or right) Euclidean algorithm, the paper introduces the concept of pseudo-coprimality for ordered pairs of univariate polynomials (f(x), g(x)), and proves that pseudo-coprimality implies the coprimality of ideals. Furthermore, by using pseudo-coprime, the paper demon-strates the existence of a left R[x]-module homomorphism ϕΠ in the non-commutative univariate polynomial ring R[x]. In the final part of the paper, we provide a theoretical application ϕΠ and point out that it corresponds to the Chinese Remainder Theorem on R[x] when R is a commutative ring with unity.
文章引用:王传夷, 刘雨喆. 一元多项式环与中国剩余定理[J]. 理论数学, 2025, 15(4): 430-444. https://doi.org/10.12677/pm.2025.154144

参考文献

[1] Cartan, H. and Eilenberg, S. (1956) Homological Algebra. Princeton University Press.
[2] Rotman, J.J. (1979) An Introduction to Homological Algebra (2nd Edition). Academic Press.
[3] Weibel, C.A. (1994) An Introduction to Homological Algebra. Cambridge University Press.
https://doi.org/10.1017/cbo9781139644136
[4] Enochs, E.E. and Jenda, O.M.G. (2011) Relative Homological Algebra. Walter de Gruyter.
[5] Bass, H. (1963) On the Ubiquity of Gorenstein Rings. Mathematische Zeitschrift, 82, 8-28.
https://doi.org/10.1007/bf01112819
[6] Brenner, S. and Butler, M.C.R. (1980) Generalizations of the Bernstein-Gelfand-Ponomarev Reflection Functors. In: Dlab, V. and Gabriel, P., Eds., Lecture Notes in Mathematics, Springer Berlin Heidelberg, 103-169.
https://doi.org/10.1007/bfb0088461
[7] Mangeney, M., Peskine, C. and Szpiro, L. (1966-1967) Anneaux de Gorenstein, et torsion en alg`ebre commutative. SWminaire Samuel. Alg`ebre commutative, Anneaux de Gorenstein, et torsion en alg`ebre commutative, Tome 1 (1966-1967), Article No. 1.
http://www.numdam.org/item/SAC 1966-1967 1 A1 0/
[8] Assem, I., Skowronski, A. and Simson, D. (2006) Elements of the Representation Theory of Associative Algebras. Cambridge University Press.
https://doi.org/10.1017/cbo9780511614309
[9] Baur, K. and Coelho Sim˜oes, R. (2019) A Geometric Model for the Module Category of a Gentle Algebra. International Mathematics Research Notices, 2021, 11357-11392.
https://doi.org/10.1093/imrn/rnz150
[10] Baur, K. and Sim˜oes, R. (2024) A Geometric Model for the Module Category of String Algebra.
https://arxiv.org/abs/2403.07810
[11] Haiden, F., Katzarkov, L. and Kontsevich, M. (2017) Flat Surfaces and Stability Structures. Publications math´ematiques de l’IHES´ , 126, 247-318.
https://doi.org/10.1007/s10240-017-0095-y
[12] Opper, S., Plamondon, P.-G. and Schroll, S. (2018) A Geometric Model for the Derived Cat-egory of Gentle Algebras.
http://arxiv.org/abs/1801.09659
[13] Atiyah, M.F. and Macdonald, I.G. (2018) Introduction to Commutative Algebra. CRC Press.
http://rguir.inflibnet.ac.in:8080/jspui/handle/123456789/8941
[14] Dong, X., Zhang, W., Shah, M., Wang, B. and Yu, N. (2019) A Restrained Paillier Cryptosys-tem and Its Applications for Access Control of Common Secret.
https://arxiv.org/abs/1912.09034
[15] Paillier, P. (1999) Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J., Ed., Lecture Notes in Computer Science, Springer Berlin Heidelberg, 223-238.
https://doi.org/10.1007/3-540-48910-x 16