| [1] | Cartan, H. and Eilenberg, S. (1956) Homological Algebra. Princeton University Press. | 
                     
                                
                                    
                                        | [2] | Rotman, J.J. (1979) An Introduction to Homological Algebra (2nd Edition). Academic Press. | 
                     
                                
                                    
                                        | [3] | Weibel, C.A. (1994) An Introduction to Homological Algebra. Cambridge University Press. https://doi.org/10.1017/cbo9781139644136
 | 
                     
                                
                                    
                                        | [4] | Enochs, E.E. and Jenda, O.M.G. (2011) Relative Homological Algebra. Walter de Gruyter. | 
                     
                                
                                    
                                        | [5] | Bass, H. (1963) On the Ubiquity of Gorenstein Rings. Mathematische Zeitschrift, 82, 8-28. https://doi.org/10.1007/bf01112819
 | 
                     
                                
                                    
                                        | [6] | Brenner, S. and Butler, M.C.R. (1980) Generalizations of the Bernstein-Gelfand-Ponomarev
Reflection Functors. In: Dlab, V. and Gabriel, P., Eds., Lecture Notes in Mathematics, Springer
Berlin Heidelberg, 103-169. https://doi.org/10.1007/bfb0088461
 | 
                     
                                
                                    
                                        | [7] | Mangeney, M., Peskine, C. and Szpiro, L. (1966-1967) Anneaux de Gorenstein, et torsion en
alg`ebre commutative. SWminaire Samuel. Alg`ebre commutative, Anneaux de Gorenstein, et
torsion en alg`ebre commutative, Tome 1 (1966-1967), Article No. 1. http://www.numdam.org/item/SAC 1966-1967 1 A1 0/
 | 
                     
                                
                                    
                                        | [8] | Assem, I., Skowronski, A. and Simson, D. (2006) Elements of the Representation Theory of
Associative Algebras. Cambridge University Press. https://doi.org/10.1017/cbo9780511614309
 | 
                     
                                
                                    
                                        | [9] | Baur, K. and Coelho Sim˜oes, R. (2019) A Geometric Model for the Module Category of a
Gentle Algebra. International Mathematics Research Notices, 2021, 11357-11392. https://doi.org/10.1093/imrn/rnz150
 | 
                     
                                
                                    
                                        | [10] | Baur, K. and Sim˜oes, R. (2024) A Geometric Model for the Module Category of String Algebra. https://arxiv.org/abs/2403.07810
 | 
                     
                                
                                    
                                        | [11] | Haiden, F., Katzarkov, L. and Kontsevich, M. (2017) Flat Surfaces and Stability Structures.
Publications math´ematiques de l’IHES´ , 126, 247-318. https://doi.org/10.1007/s10240-017-0095-y
 | 
                     
                                
                                    
                                        | [12] | Opper, S., Plamondon, P.-G. and Schroll, S. (2018) A Geometric Model for the Derived Cat-egory of Gentle Algebras. http://arxiv.org/abs/1801.09659
 | 
                     
                                
                                    
                                        | [13] | Atiyah, M.F. and Macdonald, I.G. (2018) Introduction to Commutative Algebra. CRC Press. http://rguir.inflibnet.ac.in:8080/jspui/handle/123456789/8941
 | 
                     
                                
                                    
                                        | [14] | Dong, X., Zhang, W., Shah, M., Wang, B. and Yu, N. (2019) A Restrained Paillier Cryptosys-tem and Its Applications for Access Control of Common Secret. https://arxiv.org/abs/1912.09034
 | 
                     
                                
                                    
                                        | [15] | Paillier, P. (1999) Public-Key Cryptosystems Based on Composite Degree Residuosity Classes.
In: Stern, J., Ed., Lecture Notes in Computer Science, Springer Berlin Heidelberg, 223-238. https://doi.org/10.1007/3-540-48910-x 16
 |