三维不可压缩黏弹性流体Green函数的逐点估计
The Pointwise Estimate of the Green Function for 3-D Incompressible Viscoelastic Fluids
DOI: 10.12677/AAM.2025.144217, PDF,    科研立项经费支持
作者: 罗一帆, 白一格*:太原理工大学数学学院,山西 晋中
关键词: 逐点估计Green函数黏弹性流体Pointwise Estimate Green’s Function Viscoelastic Fluids
摘要: 在本文中,我们研究三维不可压黏弹性流体的柯西问题。 首先我们引入合适的变量变换然后研究变化后方程组的线性系统的Green函数。 然后,我们应用复分析的方法得到在有限马赫数区域内关于Green 函数更精确的逐点估计。 最后我们获得关于方程组解的线性部分的更精确的逐点估 计。
Abstract: In this paper, we investigate the Cauchy problem of the 3-D incompressible viscoelastic flow. Fisrt, we introduce suitable variable transformations and then investigate the Green’s function of the linearized system for the transformed equations. Then, we apply complex analytic methods to obtain more precise pointwise estimates of the Green’s function in finite Mach number region. Finally, we obtain more accurate pointwise estimates for the linear component of the solution.
文章引用:罗一帆, 白一格. 三维不可压缩黏弹性流体Green函数的逐点估计[J]. 应用数学进展, 2025, 14(4): 927-943. https://doi.org/10.12677/AAM.2025.144217

参考文献

[1] 白一格, 张挺. 三维不可压缩盘弹性流体系统解的逐点估计[J]. 中国科学: 数学, 2021, 51(6):881-898.
[2] Chen, Y. and Zhang, P. (2006) The Global Existence of Small Solutions to the Incompressible Viscoelastic Fluid System in 2 and 3 Space Dimensions. Communications in Partial Differential Equations, 31, 1793-1810.
https://doi.org/10.1080/03605300600858960
[3] Fang, D., Zhang, T. and Zi, R. (2018) Dispersive Effects of the Incompressible Viscoelastic Fluids. Discrete & Continuous Dynamical Systems—A, 38, 5261-5295.
https://doi.org/10.3934/dcds.2018233
[4] Lei, Z., Liu, C. and Zhou, Y. (2007) Global Solutions for Incompressible Viscoelastic Fluids. Archive for Rational Mechanics and Analysis, 188, 371-398.
https://doi.org/10.1007/s00205-007-0089-x
[5] Lin, F., Liu, C. and Zhang, P. (2005) On Hydrodynamics of Viscoelastic Fluids. Communica- tions on Pure and Applied Mathematics, 58, 1437-1471.
https://doi.org/10.1002/cpa.20074
[6] Lin, F. and Zhang, P. (2007) On the InitialValue Problem of the Incompressible Viscoelastic Fluid System. Communications on Pure and Applied Mathematics, 61, 539-558.
https://doi.org/10.1002/cpa.20219
[7] Qian, J. (2010) Well-Posedness in Critical Spaces for Incompressible Viscoelastic Fluid System. Nonlinear Analysis: Theory, Methods & Applications, 72, 3222-3234.
https://doi.org/10.1016/j.na.2009.12.022
[8] Shibata, Y. (2000) On the Rate of Decay of Solutions to Linear Viscoelastic Equation. Math- ematical Methods in the Applied Sciences, 23, 203-226.
https://doi.org/10.1002/(sici)1099-1476(200002)23:3(203::aid-mma111)3.0.co;2-m
[9] Zhang, T. and Fang, D. (2012) Global Existence of Strong Solution for Equations Related to the Incompressible Viscoelastic Fluids in the Critical Lp Framework. SIAM Journal on Mathematical Analysis, 44, 2266-2288.
https://doi.org/10.1137/110851742
[10] Hu, X. and Wang, D. (2010) Local Strong Solution to the Compressible Viscoelastic Flow with Large Data. Journal of Differential Equations, 249, 1179-1198.
https://doi.org/10.1016/j.jde.2010.03.027
[11] Hu, X. and Wang, D. (2011) Global Existence for the Multi-Dimensional Compressible Vis- coelastic Flows. Journal of Differential Equations, 250, 1200-1231.
https://doi.org/10.1016/j.jde.2010.10.017
[12] Qian, J. and Zhang, Z. (2010) Global Well-Posedness for Compressible Viscoelastic Fluids near Equilibrium. Archive for Rational Mechanics and Analysis, 198, 835-868.
https://doi.org/10.1007/s00205-010-0351-5
[13] Hu, X. and Wu, G. (2013) Global Existence and Optimal Decay Rates for Three-Dimensional Compressible Viscoelastic Flows. SIAM Journal on Mathematical Analysis, 45, 2815-2833.
https://doi.org/10.1137/120892350
[14] Jia, J., Peng, J. and Mei, Z. (2014) Well-Posedness and Time-Decay for Compressible Vis- coelastic Fluids in Critical Besov Space. Journal of Mathematical Analysis and Applications, 418, 638-675.
https://doi.org/10.1016/j.jmaa.2014.04.008
[15] Wei, W., Li, Y. and Yao, Z. (2016) Decay of the Compressible Viscoelastic Flows. Communi- cations on Pure and Applied Analysis, 15, 1603-1624.
https://doi.org/10.3934/cpaa.2016004
[16] Pan, X. and Xu, J. (2019) Global Existence and Optimal Decay Estimates of the Compressible Viscoelastic Flows in Lp Critical Spaces. Discrete & Continuous Dynamical Systems—A, 39, 2021-2057.
https://doi.org/10.3934/dcds.2019085
[17] Ishigaki, Y. (2020) Diffusion Wave Phenomena and Lp Decay Estimates of Solutions of Com- pressible Viscoelastic System. Journal of Differential Equations, 269, 11195-11230.
https://doi.org/10.1016/j.jde.2020.07.020
[18] Bai, Y. and Zhang, T. (2023) The Pointwise Estimates of Solutions for the 3D Compressible Viscoelastic Fluids. Journal of Differential Equations, 356, 336-374.
https://doi.org/10.1016/j.jde.2023.01.048
[19] Hoff, D. and Zumbrun, K. (1997) Pointwise Decay Estimates for Multidimensional Navier- Stokes Diffusion Waves. Zeitschrift fu¨r angewandte Mathematik und Physik, 48, 597-614.
https://doi.org/10.1007/s000330050049
[20] Liu, T. and Wang, W. (1998) The Pointwise Estimates of Diffusion Wave for the Navier-Stokes Systems in Odd Multi-Dimensions. Communications in Mathematical Physics, 196, 145-173.
https://doi.org/10.1007/s002200050418
[21] Zhang, T. (2014) Global Strong Solutions for Equations Related to the Incompressible Vis- coelastic Fluids with a Class of Large Initial Data. Nonlinear Analysis: Theory, Methods & Applications, 100, 59-77.
https://doi.org/10.1016/j.na.2014.01.014
[22] Du, L. and Wu, Z. (2017) Solving the Non-Isentropic Navier-Stokes Equations in Odd Space Di- mensions: The Green Function Method. Journal of Mathematical Physics, 58, Article 101506.
https://doi.org/10.1063/1.5005915
[23] Liu, T. and Noh, S.E. (2015) Wave Propagation for the Compressible Navier-Stokes Equations. Journal of Hyperbolic Differential Equations, 12, 385-445.
https://doi.org/10.1142/s0219891615500113
[24] Liu, T.-P. and Yu, S. (2006) Green’s Function of Boltzmann Equation, 3-D Waves. Bulletin of the Institute of Mathematics, Academia Sinica, 1, 1-78.
[25] Wang, W. and Yang, T. (2001) The Pointwise Estimates of Solutions for Euler Equations with Damping in Multi-Dimensions. Journal of Differential Equations, 173, 410-450.
https://doi.org/10.1006/jdeq.2000.3937