|
[1]
|
白一格, 张挺. 三维不可压缩盘弹性流体系统解的逐点估计[J]. 中国科学: 数学, 2021, 51(6):881-898.
|
|
[2]
|
Chen, Y. and Zhang, P. (2006) The Global Existence of Small Solutions to the Incompressible Viscoelastic Fluid System in 2 and 3 Space Dimensions. Communications in Partial Differential Equations, 31, 1793-1810. [Google Scholar] [CrossRef]
|
|
[3]
|
Fang, D., Zhang, T. and Zi, R. (2018) Dispersive Effects of the Incompressible Viscoelastic Fluids. Discrete & Continuous Dynamical Systems—A, 38, 5261-5295. [Google Scholar] [CrossRef]
|
|
[4]
|
Lei, Z., Liu, C. and Zhou, Y. (2007) Global Solutions for Incompressible Viscoelastic Fluids. Archive for Rational Mechanics and Analysis, 188, 371-398. [Google Scholar] [CrossRef]
|
|
[5]
|
Lin, F., Liu, C. and Zhang, P. (2005) On Hydrodynamics of Viscoelastic Fluids. Communica- tions on Pure and Applied Mathematics, 58, 1437-1471. [Google Scholar] [CrossRef]
|
|
[6]
|
Lin, F. and Zhang, P. (2007) On the InitialValue Problem of the Incompressible Viscoelastic Fluid System. Communications on Pure and Applied Mathematics, 61, 539-558. [Google Scholar] [CrossRef]
|
|
[7]
|
Qian, J. (2010) Well-Posedness in Critical Spaces for Incompressible Viscoelastic Fluid System. Nonlinear Analysis: Theory, Methods & Applications, 72, 3222-3234. [Google Scholar] [CrossRef]
|
|
[8]
|
Shibata, Y. (2000) On the Rate of Decay of Solutions to Linear Viscoelastic Equation. Math- ematical Methods in the Applied Sciences, 23, 203-226. [Google Scholar] [CrossRef]
|
|
[9]
|
Zhang, T. and Fang, D. (2012) Global Existence of Strong Solution for Equations Related to the Incompressible Viscoelastic Fluids in the Critical Lp Framework. SIAM Journal on Mathematical Analysis, 44, 2266-2288. [Google Scholar] [CrossRef]
|
|
[10]
|
Hu, X. and Wang, D. (2010) Local Strong Solution to the Compressible Viscoelastic Flow with Large Data. Journal of Differential Equations, 249, 1179-1198. [Google Scholar] [CrossRef]
|
|
[11]
|
Hu, X. and Wang, D. (2011) Global Existence for the Multi-Dimensional Compressible Vis- coelastic Flows. Journal of Differential Equations, 250, 1200-1231. [Google Scholar] [CrossRef]
|
|
[12]
|
Qian, J. and Zhang, Z. (2010) Global Well-Posedness for Compressible Viscoelastic Fluids near Equilibrium. Archive for Rational Mechanics and Analysis, 198, 835-868. [Google Scholar] [CrossRef]
|
|
[13]
|
Hu, X. and Wu, G. (2013) Global Existence and Optimal Decay Rates for Three-Dimensional Compressible Viscoelastic Flows. SIAM Journal on Mathematical Analysis, 45, 2815-2833. [Google Scholar] [CrossRef]
|
|
[14]
|
Jia, J., Peng, J. and Mei, Z. (2014) Well-Posedness and Time-Decay for Compressible Vis- coelastic Fluids in Critical Besov Space. Journal of Mathematical Analysis and Applications, 418, 638-675. [Google Scholar] [CrossRef]
|
|
[15]
|
Wei, W., Li, Y. and Yao, Z. (2016) Decay of the Compressible Viscoelastic Flows. Communi- cations on Pure and Applied Analysis, 15, 1603-1624. [Google Scholar] [CrossRef]
|
|
[16]
|
Pan, X. and Xu, J. (2019) Global Existence and Optimal Decay Estimates of the Compressible Viscoelastic Flows in Lp Critical Spaces. Discrete & Continuous Dynamical Systems—A, 39, 2021-2057. [Google Scholar] [CrossRef]
|
|
[17]
|
Ishigaki, Y. (2020) Diffusion Wave Phenomena and Lp Decay Estimates of Solutions of Com- pressible Viscoelastic System. Journal of Differential Equations, 269, 11195-11230. [Google Scholar] [CrossRef]
|
|
[18]
|
Bai, Y. and Zhang, T. (2023) The Pointwise Estimates of Solutions for the 3D Compressible Viscoelastic Fluids. Journal of Differential Equations, 356, 336-374. [Google Scholar] [CrossRef]
|
|
[19]
|
Hoff, D. and Zumbrun, K. (1997) Pointwise Decay Estimates for Multidimensional Navier- Stokes Diffusion Waves. Zeitschrift fu¨r angewandte Mathematik und Physik, 48, 597-614. [Google Scholar] [CrossRef]
|
|
[20]
|
Liu, T. and Wang, W. (1998) The Pointwise Estimates of Diffusion Wave for the Navier-Stokes Systems in Odd Multi-Dimensions. Communications in Mathematical Physics, 196, 145-173. [Google Scholar] [CrossRef]
|
|
[21]
|
Zhang, T. (2014) Global Strong Solutions for Equations Related to the Incompressible Vis- coelastic Fluids with a Class of Large Initial Data. Nonlinear Analysis: Theory, Methods & Applications, 100, 59-77. [Google Scholar] [CrossRef]
|
|
[22]
|
Du, L. and Wu, Z. (2017) Solving the Non-Isentropic Navier-Stokes Equations in Odd Space Di- mensions: The Green Function Method. Journal of Mathematical Physics, 58, Article 101506. [Google Scholar] [CrossRef]
|
|
[23]
|
Liu, T. and Noh, S.E. (2015) Wave Propagation for the Compressible Navier-Stokes Equations. Journal of Hyperbolic Differential Equations, 12, 385-445. [Google Scholar] [CrossRef]
|
|
[24]
|
Liu, T.-P. and Yu, S. (2006) Green’s Function of Boltzmann Equation, 3-D Waves. Bulletin of the Institute of Mathematics, Academia Sinica, 1, 1-78.
|
|
[25]
|
Wang, W. and Yang, T. (2001) The Pointwise Estimates of Solutions for Euler Equations with Damping in Multi-Dimensions. Journal of Differential Equations, 173, 410-450. [Google Scholar] [CrossRef]
|