整数群上增长函数的次可乘性与增长率
Submultiplication and Growth Rate of Growth Functions on the Integer Group
摘要: 本文给出了整数群 Z 上一个真的长度函数,并证明了这个长度函数诱导的增长函数不是次可乘的, 但却满足一个一般的次可乘不等式。同时计算出了该增长函数的增长率是欧拉数 e。
Abstract: We give a proper length function on the integer group Z, and demonstrate that its induced growth function is not submultiplicative, but satisfies a general submultiplica- tive inequality. We also show that the growth rate of this growth function is Euler’s number e.
参考文献
|
[1]
|
Milnor, J. (1968) A Note on Curvature and Fundamental Group. Journal of Differential Ge- ometry, 2, 1-7. [Google Scholar] [CrossRef]
|
|
[2]
|
Wolf, J.A. (1968) Growth of Finitely Generated Solvable Groups and Curvature of Riemannian Manifolds. Journal of Differential Geometry, 2, 421-446. [Google Scholar] [CrossRef]
|
|
[3]
|
Gromov, M. (1981) Groups of Polynomial Growth and Expanding Maps. Publications Mathé- matiques de l’Institut des Hautes Études Scientifiques, 53, 53-78. [Google Scholar] [CrossRef]
|
|
[4]
|
Nica, B. (2010) On the Degree of Rapid Decay. Proceedings of the American Mathematical Society, 138, 2341-2347. [Google Scholar] [CrossRef]
|
|
[5]
|
Ceccherini-Silberstein, T. and Coornaert, M. (2010) Cellular Automata and Groups. Springer-Verlag. [Google Scholar] [CrossRef]
|
|
[6]
|
Ceccherini-Silberstein, T. and D’Adderio, M. (2021) Topics in Groups and Geometry-Growth, Amenability, and Random Walks. Springer. [Google Scholar] [CrossRef]
|
|
[7]
|
de la Harpe, P. (2000) Topics in Geometric Group Theory. University of Chicago Press. [8] Löh, C. (2017) Geometric Group Theory, an Introduction. Springer.
|
|
[8]
|
Mann, A. (2012) How Groups Grow. London Math. Cambridge University Press. [Google Scholar] [CrossRef]
|
|
[9]
|
Hille, E. and Phillips, R.S. (1957) Functional Analysis and Semi-Groups. In: AMS Colloquium Publications, Vol. 31, American Mathematical Society.
|