整数群上增长函数的次可乘性与增长率
Submultiplication and Growth Rate of Growth Functions on the Integer Group
DOI: 10.12677/AAM.2025.144218, PDF,   
作者: 卢斯悦:南京航空航天大学数学学院,江苏 南京
关键词: 整数群增长函数次可乘增长率Integer Group Growth Function Submultiplication Growth Rate
摘要: 本文给出了整数群 Z 上一个真的长度函数,并证明了这个长度函数诱导的增长函数不是次可乘的, 但却满足一个一般的次可乘不等式。同时计算出了该增长函数的增长率是欧拉数 e。
Abstract: We give a proper length function on the integer group Z, and demonstrate that its induced growth function is not submultiplicative, but satisfies a general submultiplica- tive inequality. We also show that the growth rate of this growth function is Euler’s number e.
文章引用:卢斯悦. 整数群上增长函数的次可乘性与增长率[J]. 应用数学进展, 2025, 14(4): 944-953. https://doi.org/10.12677/AAM.2025.144218

参考文献

[1] Milnor, J. (1968) A Note on Curvature and Fundamental Group. Journal of Differential Ge- ometry, 2, 1-7.
https://doi.org/10.4310/jdg/1214501132
[2] Wolf, J.A. (1968) Growth of Finitely Generated Solvable Groups and Curvature of Riemannian Manifolds. Journal of Differential Geometry, 2, 421-446.
https://doi.org/10.4310/jdg/1214428658
[3] Gromov, M. (1981) Groups of Polynomial Growth and Expanding Maps. Publications Mathé- matiques de l’Institut des Hautes Études Scientifiques, 53, 53-78.
https://doi.org/10.1007/bf02698687
[4] Nica, B. (2010) On the Degree of Rapid Decay. Proceedings of the American Mathematical Society, 138, 2341-2347.
https://doi.org/10.1090/s0002-9939-10-10289-5
[5] Ceccherini-Silberstein, T. and Coornaert, M. (2010) Cellular Automata and Groups. Springer-Verlag.
https://doi.org/10.1007/978-3-642-14034-1
[6] Ceccherini-Silberstein, T. and D’Adderio, M. (2021) Topics in Groups and Geometry-Growth, Amenability, and Random Walks. Springer.
https://doi.org/10.1007/978-3-030-88109-2
[7] de la Harpe, P. (2000) Topics in Geometric Group Theory. University of Chicago Press. [8] Löh, C. (2017) Geometric Group Theory, an Introduction. Springer.
[8] Mann, A. (2012) How Groups Grow. London Math. Cambridge University Press.
https://doi.org/10.1017/CBO9781139095129
[9] Hille, E. and Phillips, R.S. (1957) Functional Analysis and Semi-Groups. In: AMS Colloquium Publications, Vol. 31, American Mathematical Society.