半C-可约共形双扭曲积芬斯勒度量
Semi-C-Reducible Conformally Doubly Warped Product Finsler Metric
摘要: 设F1和F2分别是光滑流形M1和M2上的芬斯勒度量,共形双扭曲积芬斯勒度量是在乘积流形M=M1×M2上赋予的芬斯勒度量 F 2 = e 2  ( f 2 2 F 2 1 + f 2 1 F 2 2 ) , Ù , 其中f1、f2和$\sigma$分别是M1 、M2和M上的正值光滑函数。本文证明了半C-可约共形双扭曲积芬斯勒度量是类C2芬斯勒度量。
Abstract: Let F1 and F2 be two Finsler metrics on smooth manifold M1 and M2,respectively.The conformally doubly warped product Finsler metric F 2 = e 2  ( f 2 2 F 2 1 + f 2 1 F 2 2 ) , Ù is a Finsler metric endowed on the M=M1×M2 ,where f1、f2 and $\sigma$ are positive smooth functions onM1 、M2 and M, respectively.It is proved that semi-C-reducible conformally doubly warped product Finsler metric is a C2.
文章引用:加依达尔·里扎别克, 何勇, 杨蕊嘉, 陈静雅. 半C-可约共形双扭曲积芬斯勒度量[J]. 理论数学, 2025, 15(4): 330-337. https://doi.org/10.12677/pm.2025.154136

参考文献

[1] Matsumoto, M. (1974) On Finsler Spaces with Randers' Metric and Special Forms of Important Tensors. Kyoto Journal of Mathematics, 14, 477-498. https://doi.org/10.1215/kjm/1250523171
[2] Matsumoto, M. and Shibata, C. (1979) On Semi-C-Reducibility, T-Tensor = 0 and S4-Likeness of Finsler Spaces. Kyoto Journal of Mathematics, 19, 301-31. https://doi.org/10.1215/kjm/1250522434
[3] Matsumoto, M. (1980) On Semi C-Reducible Finsler Spaces with Constant Coecients and C2-Like Finsler Spaces. Tensor, NS, 34, 218-222.
[4] Chethana, C. and Narasimhamurthy, S.K. (2015) On Semi Reducible Finsler Metrics. Journal on Science Engineering and Technology, 2, 261-264.
[5] Dwivedi, P.K. (2011) P-Reducible Finsler Spaces and Applications. International Journal of Mathematical Analysis, 5, 223-229.
[6] Matsumoto, M. (1992) Theory of Finsler Spaces with ( , )-Metric. Reports on Mathematical Physics, 31, 43-83.
https://doi.org/10.1016/0034-4877(92)90005-l
[7] Bishop, R.L. and O'Neill, B. (1969) Manifolds of Negative Curvature. Transactions of the American Mathematical Society, 145, 1-49.
https://doi.org/10.1090/s0002-9947-1969-0251664-4
[8] Asanov, G.S. (1992) Finslerian Extension of Schwarzschild Metric. Fortschritte der Physik/Progress of Physics, 40, 667-693.
https://doi.org/10.1002/prop.2190400705
[9] Peyghan, E. and Tayebi, A. (2012) On Doubly Warped Product Finsler Manifolds. Nonlinear Analysis: Real World Applications, 13, 1703-1720.
https://doi.org/10.1016/j.nonrwa.2011.12.002
[10] Soleiman, A. and Abdelsalam, A.M. (2019) On Conformally Doubly Warped Product Finsler Manifold. Journal of the Egyptian Mathematical Society, 27, 1-13.
https://doi.org/10.1186/s42787-019-0059-0
[11] Bao, D., Chern, S.S. and Shen, Z.M. (2000) An Introduction to Riemann-Finsler Geometry. Springer Science.
[12] Shen, Z.M. (2001) Di erential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers.