p-进域上奇异积分算子与Lipschitz函数生成的交换子的有界性
Boundedness of Commutator Generatedby Singular Integral Operator and Lipschitz Function on the p-Adic Field
DOI: 10.12677/pm.2025.154138, PDF,    科研立项经费支持
作者: 张雯雯:牡丹江师范学院数学科学学院,黑龙江 牡丹江
关键词: p-进域 奇异积分算子 交换子 Lipschitz空间 Campanato空间 Lebesgue空间p-Adic FieldSingular Integral Operator Commutator Lipschitz Space Campanato Space Lebesgue Space
摘要: 本文讨论了p-进域上的奇异积分算子与Lipschitz函数生成的交换子的有界性, 证明了交换子是从Lebesgue空间IJCampanato空间有界的。
Abstract: In this paper, we discussed the boundedness of commutator generated by singular integral operator and Lipschitz function on the p-adic field. We proved that the commutator is bounded from Lebesgue space to certain Campanato space.
文章引用:张雯雯. p-进域上奇异积分算子与Lipschitz函数生成的交换子的有界性[J]. 理论数学, 2025, 15(4): 351-362.

参考文献

[1] Hensel, K. (1905) U¨ ber eine neue Begru¨ndung der Theorie der algebraischen Zahlen. Journal fu¨r die reine und angewandte Mathematik (Crelles Journal), 1905, 1-32.
https://doi.org/10.1515/crll.1905.128.1
[2] Vladimirov, V.S., Zelenov, E.I. and Volovich, I.V. (1994) p-Adic Analysis and Mathematical Physics. World Scientific.
https://doi.org/10.1142/1581
[3] Vladimirov, V.S. and Volovich, I.V. (1989) p-Adic Quantum Mechanics. Communications in Mathematical Physics, 123, 659-676.
https://doi.org/10.1007/bf01218590
[4] Vladimirov, V.S. and Volovich, I.V. (1989) p-Adic Quantum Mechanics. Communications in Mathematical Physics, 123, 659-676.
https://doi.org/10.1007/bf01218590
[5] Albeverio, S., Khrennikov, A.Y. and Shelkovich, V.M. (2006) Harmonic Analysis in the P- Adic Lizorkin Spaces: Fractional Operators, Pseudo-Differential Equations, p-Adic Wavelets, Tauberian Theorems. Journal of Fourier Analysis and Applications, 12, 393-425.
https://doi.org/10.1007/s00041-006-6014-0
[6] Chuong, N.M. (2018) Pseudodifferential Operators and Wavelets over Real and p-Adic Fields. Springer International Publishing.
https://doi.org/10.1007/978-3-319-77473-2
[7] Chuong, N.M. and Duong, D.V. (2013) Wavelet Bases in the Lebesgue Spaces on the Field of p-Adic Numbers. P-Adic Numbers, Ultrametric Analysis, and Applications, 5, 106-121.
https://doi.org/10.1134/s2070046613020027
[8] Volosivets, S.S. (2013) Maximal Function and Riesz Potential on p-Adic Linear Spaces. P-Adic Numbers, Ultrametric Analysis, and Applications, 5, 226-234.
https://doi.org/10.1134/s2070046613030059
[9] Volosivets, S.S. (2017) Generalized Fractional Integrals in p-Adic Morrey and Herz Spaces. P-Adic Numbers, Ultrametric Analysis and Applications, 9, 53-61.
https://doi.org/10.1134/s2070046617010058
[10] Calderon, A.P. and Zygmund, A. (1952) On the Existence of Certain Singular Integrals. Acta Mathematica, 88, 85-139.
https://doi.org/10.1007/bf02392130
[11] Calderon, A.P. and Zygmund, A. (1956) On Singular Integrals. American Journal of Mathe- matics, 78, 289-309.
https://doi.org/10.2307/2372517
[12] 韩永生. 近代调和分析方法及其应用[M]. 北京: 科学出版社, 1988.
[13] Hirschman, I.I. (1955) The Decomposition of Walsh and Fourier Series. Memoirs of the Amer- ican Mathematical Society.
https://doi.org/10.1090/memo/0015
[14] Coifman, R.R., Rochberg, R. and Weiss, G. (1976) Factorization Theorems for Hardy Spaces in Several Variables. The Annals of Mathematics, 103, 611-635.
https://doi.org/10.2307/1970954
[15] Guo, W., Lian, J. and Wu, H. (2019) The Unified Theory for the Necessity of Bounded Commutators and Applications. The Journal of Geometric Analysis, 30, 3995-4035.
https://doi.org/10.1007/s12220-019-00226-y
[16] Shirai, S. (2006) Necessary and Sufficient Conditions for Boundedness of Commutators of Fractional Integral Operators on Classical Morrey Spaces. Hokkaido Mathematical Journal, 35, 683-696.
https://doi.org/10.14492/hokmj/1285766424
[17] Zhang, L., Shi, S.G. and Huang, H. (2015) New Characterizations of Lipschitz Space via Commutators on Morrey Spaces. Advances in Mathematics, 44, 899-905.
[18] Phillips, K. and Taibleson, M. (1969) Singular Integrals in Several Variables over a Local Field. Pacific Journal of Mathematics, 30, 209-231.
https://doi.org/10.2140/pjm.1969.30.209
[19] Taibleson, M.H. (1975) Fourier Analysis on Local Fields. Princeton University Press; University of Tokyo Press.
[20] Mo, H.X., Han, Z., Yang, L. and Wang, X.J. (2019) p-Adic Singular Integrals and Their Commutators in Generalized Morrey Spaces. Journal of Inequalities and Applications, 2019, 1-13.
https://doi.org/10.1186/s13660-019-2009-7
[21] Shi, Y., Li, L. and Shen, Z. (2023) Boundedness of p-Adic Singular Integrals and Multilinear Commutator on Morrey-Herz Spaces. Journal of Function Spaces, 2023, Article 9965919.
https://doi.org/10.1155/2023/9965919
[22] Ho, K. (2022) Singular Integral Operators for Rearrangement-Invariant Morrey Spaces on Local Fields. Bolet´ın de la Sociedad Matematica Mexicana, 29, 1-15.
https://doi.org/10.1007/s40590-022-00474-z
[23] Wu, Q.Y., Lu, S.Z. and Fu, Z.W. (2017) p-Adic Central Function Spaces and Singular Integral Operators. Chinese Journal of Contemporary Mathematics, 38, 73-90.
[24] Janson, S. (1978) Mean Oscillation and Commutators of Singular Integral Operators. Arkiv f¨or Matematik, 16, 263-270.
https://doi.org/10.1007/bf02386000
[25] Paluszynski, M. (1995) Characterization of the Besov Spaces via the Commutator Operator of Coifman, Rochberg and Weiss. Indiana University Mathematics Journal, 44, 1-17.
https://doi.org/10.1512/iumj.1995.44.1976
[26] Shi, S. and Lu, S. (2013) Some Characterizations of Campanato Spaces via Commutators on Morrey Spaces. Pacific Journal of Mathematics, 264, 221-234.
https://doi.org/10.2140/pjm.2013.264.221
[27] Campanato, S. (1963) Proprieta´ di h¨olderianit´a di alcune classi di funzioni. Annali della Scuola Normale Superiore di Pisa-Scienze Fisiche e Matematiche, 17, 175-188.
[28] He, Q. and Li, X. (2022) Characterization of Lipschitz Spaces via Commutators of Maximal Function on the pVector Space. Journal of Mathematics, 2022, Article 7430272.
https://doi.org/10.1155/2022/7430272
[29] Mo, H., Wang, X. and Ma, R. (2018) Commutator of Riesz Potential in p-Adic Generalized Morrey Spaces. Frontiers of Mathematics in China, 13, 633-645.
https://doi.org/10.1007/s11464-018-0696-x