可压欧拉方程高精度数值格式耗散测度值解的收敛性
Convergence of Dissipative Measure-Valued Solutions for High Order Numerical Schemes of the Compressible Euler Equations
摘要: 本文主要考虑可压欧拉方程组的初边值问题。研究了两类具有高阶精度的熵稳定有限体积格式的收敛性,通过对数值解建立合适的一致性估计,证明随着步长 h → 0,若数值解的密度是远离真空且有界的,则由这两类熵稳定数值格式构造的解可以生成耗散测度值解。
Abstract: In this paper, we primarily consider the initial boundary value problem for compressible Euler equations. We study the convergence of two classes of high-order accurate entropy stable finite volume schemes. By establishing appropriate the priori estimates for the numerical solutions, we prove that as the step size h → 0, the solutions constructed by these two types of entropy stable numerical schemes can generate dissipative measure-valued solutions, provided that the density of the approximate solutions is bounded away from vacuum and bounded above.
文章引用:皇晓燕, 华嘉乐. 可压欧拉方程高精度数值格式耗散测度值解的收敛性[J]. 理论数学, 2025, 15(4): 458-471. https://doi.org/10.12677/pm.2025.154146

参考文献

[1] Evans, L. C. (1998) Partial Differential Equations (Graduate Studies in Mathematics). 2nd edition, Americam Mathematical Society.
[2] de Lellis, C. and Székelyhidi, L. (2008) On Admissibility Criteria for Wea k Solutions of the Euler Equations. Archive for Rational Mechanics and Analysis, 195, 225-260.
https://doi.org/10.1007/s00205-008-0201-x
[3] de Lellis, C. and Székelyhidi, L. (2009) The Euler Equations as a Differential Inclusion. Annals of Mathematics, 170, 1417-1436.
https://doi.org/10.4007/annals.2009.170.1417
[4] Chiodaroli, E., De Lellis, C. and Kreml, O. (2014) Global Ill‐Posedness of the Isentropic System of Gas Dynamics. Communications on Pure and Applied Mathematics, 68, 1157-1190.
https://doi.org/10.1002/cpa.21537
[5] DiPerna, R.J. (1985) Measure-Valued Solutions to Conservation Laws. Archive for Rational Mechanics and Analysis, 88, 223-270.
https://doi.org/10.1007/bf00752112
[6] Fjordholm, U. (2013) High-Order Accurate Entropy Stable Numerical Schemes for Hyperbolic Conservation Laws. ETH Zürich Dissertation Nr. 21025.
[7] Fjordholm, U.S., Käppeli, R., Mishra, S. and Tadmor, E. (2015) Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws. Foundations of Computational Mathematics, 17, 763-827.
https://doi.org/10.1007/s10208-015-9299-z
[8] Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A. and Wiedemann, E. (2016) Dissipative Measure-Valued Solutions to the Compressible Navier-Stokes System. Calculus of Variations and Partial Differential Equations, 55, Article No. 141.
https://doi.org/10.1007/s00526-016-1089-1
[9] Prodi, G. (1959) Un teorema di unicità per le equazioni di Navier-Stokes. Annali di Matematica Pura ed Applicata, 48, 173-182.
https://doi.org/10.1007/bf02410664
[10] Serrin, J. (1963) The Initial Value Problem for the Navier-Stokes Equations. In: Langer, R.E., Ed., Nonlinear Problems, University of Wisconsin Press, 69-98.
[11] Feireisl, E., Lukáčová-Medvid’ová, M. and Mizerová, H. (2019) Convergence of Finite Volume Schemes for the Euler Equations via Dissipative Measure-Valued Solutions. Foundations of Computational Mathematics, 20, 923-966.
https://doi.org/10.1007/s10208-019-09433-z
[12] Feireisl, E. and Lukáčová-Medvid’ová, M. (2017) Convergence of a Mixed Finite ElementFinite Volume Scheme for the Isentropic Navier-Stokes System via Dissipative Measure-Valued Solutions. Foundations of Computational Mathematics, 18, 703-730.
https://doi.org/10.1007/s10208-017-9351-2
[13] Tadmor, E. (1987) The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws. I. Mathematics of Computation, 49, 91-103.
https://doi.org/10.2307/2008251
[14] LeFloch, P.G., Mercier, J.M. and Rohde, C. (2002) Fully Discrete, Entropy Conservative Schemes of Arbitraryorder. SIAM Journal on Numerical Analysis, 40, 1968-1992.
https://doi.org/10.1137/s003614290240069x
[15] Fjordholm, U.S., Mishra, S. and Tadmor, E. (2012) ENO Reconstruction and ENO Interpolation Are Stable. Foundations of Computational Mathematics, 13, 139-159.
https://doi.org/10.1007/s10208-012-9117-9
[16] Pedregal, P. (1997) Parametrized Measures and Variational Principles. Birkhäuser Basel.