[1]
|
Evans, L. C. (1998) Partial Differential Equations (Graduate Studies in Mathematics). 2nd
edition, Americam Mathematical Society.
|
[2]
|
de Lellis, C. and Székelyhidi, L. (2008) On Admissibility Criteria for Wea k Solutions of the
Euler Equations. Archive for Rational Mechanics and Analysis, 195, 225-260.
https://doi.org/10.1007/s00205-008-0201-x
|
[3]
|
de Lellis, C. and Székelyhidi, L. (2009) The Euler Equations as a Differential Inclusion. Annals
of Mathematics, 170, 1417-1436. https://doi.org/10.4007/annals.2009.170.1417
|
[4]
|
Chiodaroli, E., De Lellis, C. and Kreml, O. (2014) Global Ill‐Posedness of the Isentropic
System of Gas Dynamics. Communications on Pure and Applied Mathematics, 68, 1157-1190.
https://doi.org/10.1002/cpa.21537
|
[5]
|
DiPerna, R.J. (1985) Measure-Valued Solutions to Conservation Laws. Archive for Rational
Mechanics and Analysis, 88, 223-270. https://doi.org/10.1007/bf00752112
|
[6]
|
Fjordholm, U. (2013) High-Order Accurate Entropy Stable Numerical Schemes for Hyperbolic
Conservation Laws. ETH Zürich Dissertation Nr. 21025.
|
[7]
|
Fjordholm, U.S., Käppeli, R., Mishra, S. and Tadmor, E. (2015) Construction of Approximate
Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws. Foundations
of Computational Mathematics, 17, 763-827. https://doi.org/10.1007/s10208-015-9299-z
|
[8]
|
Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A. and Wiedemann, E. (2016) Dissipative
Measure-Valued Solutions to the Compressible Navier-Stokes System. Calculus of Variations
and Partial Differential Equations, 55, Article No. 141.
https://doi.org/10.1007/s00526-016-1089-1
|
[9]
|
Prodi, G. (1959) Un teorema di unicità per le equazioni di Navier-Stokes. Annali di Matematica Pura ed Applicata, 48, 173-182. https://doi.org/10.1007/bf02410664
|
[10]
|
Serrin, J. (1963) The Initial Value Problem for the Navier-Stokes Equations. In: Langer, R.E.,
Ed., Nonlinear Problems, University of Wisconsin Press, 69-98.
|
[11]
|
Feireisl, E., Lukáčová-Medvid’ová, M. and Mizerová, H. (2019) Convergence of Finite Volume
Schemes for the Euler Equations via Dissipative Measure-Valued Solutions. Foundations of
Computational Mathematics, 20, 923-966. https://doi.org/10.1007/s10208-019-09433-z
|
[12]
|
Feireisl, E. and Lukáčová-Medvid’ová, M. (2017) Convergence of a Mixed Finite ElementFinite Volume Scheme for the Isentropic Navier-Stokes System via Dissipative Measure-Valued
Solutions. Foundations of Computational Mathematics, 18, 703-730.
https://doi.org/10.1007/s10208-017-9351-2
|
[13]
|
Tadmor, E. (1987) The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws. I. Mathematics of Computation, 49, 91-103. https://doi.org/10.2307/2008251
|
[14]
|
LeFloch, P.G., Mercier, J.M. and Rohde, C. (2002) Fully Discrete, Entropy Conservative
Schemes of Arbitraryorder. SIAM Journal on Numerical Analysis, 40, 1968-1992.
https://doi.org/10.1137/s003614290240069x
|
[15]
|
Fjordholm, U.S., Mishra, S. and Tadmor, E. (2012) ENO Reconstruction and ENO Interpolation Are Stable. Foundations of Computational Mathematics, 13, 139-159.
https://doi.org/10.1007/s10208-012-9117-9
|
[16]
|
Pedregal, P. (1997) Parametrized Measures and Variational Principles. Birkhäuser Basel.
|