[1]
|
Dinh, N., Mordukhovich, B.S. and Nghia, T.T.A. (2009) Qualification and Optimality Condi- tions for DC Programs with Infinite Constraints. Acta Mathematica Vietnamica, 34, 125-155.
|
[2]
|
Dinh, N., Nghia, T.T.A. and Vallet, G. (2010) A Closedness Condition and Its Applications to DC Programs with Convex Constraints. Optimization, 59, 541-560. https://doi.org/10.1080/02331930801951348
|
[3]
|
Dinh, N., Vallet, G. and Nghia, T.T.A. (2008) Farkas-Type Results and Duality for DC Pro- grams with Convex Constraints.Journal of Convex Analysis, 15, 235-262.
|
[4]
|
Dinh, N., Mordukhovich, B. and Nghia, T.T.A. (2009) Subdifferentials of Value Functions and Optimality Conditions for DC and Bilevel Infinite and Semi-Infinite Programs. Mathematical Programming, 123, 101-138. https://doi.org/10.1007/s10107-009-0323-4
|
[5]
|
Hiriart-Urruty, J.-B. (1989) From Convex Optimization to Nonconvex Optimization. Neces- sary and Sufficient Conditions for Global Optimality. In: Clarke, F.H., Dem’yanov, V.F. and Giannessi, F., Eds., Nonsmooth Optimization and Related Topics, Springer, 219-239. https://doi.org/10.1007/978-1-4757-6019-4 13
|
[6]
|
Sun, X., Li, S. and Zhao, D. (2013) Duality and Farkas-Type Results for DC Infinite Program- ming with Inequality Constraints. Taiwanese Journal of Mathematics, 17, 1227-1244. https://doi.org/10.11650/tjm.17.2013.2675
|
[7]
|
Correa, R., L´opez, M.A. and P´erez-Aros, P. (2021) Necessary and Sufficient Optimality Con- ditions in DC Semi-Infinite Programming. SIAM Journal on Optimization, 31, 837-865. https://doi.org/10.1137/19m1303320
|
[8]
|
Mart´ınez-Legaz, J.E. and Seeger, A. (1992) A Formula on the Approximate Subdifferential of the Difference of Convex Functions. Bulletin of the Australian Mathematical Society, 45, 37-41. https://doi.org/10.1017/s0004972700036984
|
[9]
|
Urruty, J.B.H. and Lemar´echal, C. (1993) Convex Analysis and Minimization Algorithms. Springer-Verlag.
|
[10]
|
An, L.T.H. and Tao, P.D. (2005) The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems. Annals of Operations Research, 133, 23-46. https://doi.org/10.1007/s10479-004-5022-1
|
[11]
|
Fajardo, M.D. and Vidal, J. (2023) On Fenchel c-Conjugate Dual Problems for DC Optimiza- tion: Characterizing Weak, Strong and Stable Strong Duality. Optimization, 73, 2473-2500. https://doi.org/10.1080/02331934.2023.2230988
|
[12]
|
Fajardo, M.D. and Vidal-Nunez, J. (2024) Lagrange Duality on DC Evenly Convex Optimiza- tion Problems via a Generalized Conjugation Scheme. Optimization Letters. https://doi.org/10.1007/s11590-024-02167-0
|
[13]
|
Fajardo, M.D. and Vidal, J. (2022) On Subdifferentials via a Generalized Conjugation Scheme: An Application to DC Problems and Optimality Conditions. Set-Valued and Variational Anal- ysis, 30, 1313-1331. https://doi.org/10.1007/s11228-022-00644-1
|
[14]
|
魏俊林, 游曼雪. 一类DC复合优化问题的Fenchel C-conjugate对偶理论[J]. 内江师范学院学报, 2024, 39(8): 28-34.
|
[15]
|
Mart´ınez-Legaz, J.E. and Vicente-P´erez, J. (2011) The E-Support Function of an E-Convex Set and Conjugacy for E-Convex Functions. Journal of Mathematical Analysis and Applications, 376, 602-612. https://doi.org/10.1016/j.jmaa.2010.10.058
|
[16]
|
Fajardo, M.D., Vicente-P´erez, J. and Rodr´ıguez, M.M.L. (2011) Infimal Convolution, c- Subdifferentiability, and Fenchel Duality in Evenly Convex Optimization. TOP, 20, 375-396. https://doi.org/10.1007/s11750-011-0208-6
|
[17]
|
Mart´ınez-Legaz, J.E. (2005) Generalized Convex Duality and Its Economic Applications. In: Hadjisavvas, N., Komlo´si, S. and Schaible, S., Eds., Nonconvex Optimization and Its Applica- tions, Kluwer Academic Publishers, 237-292. https://doi.org/10.1007/0-387-23393-8 6
|
[18]
|
Fang, D.H. and Zhao, X.P. (2014) Local and Global Optimality Conditions for DC Infinite Optimization Problems. Taiwanese Journal of Mathematics, 18, 817-834. https://doi.org/10.11650/tjm.18.2014.3888
|
[19]
|
Fang, D. and Chen, Z. (2013) Total Lagrange Duality for DC Infinite Optimization Problems. Fixed Point Theory and Applications, 2013, Article No. 269. https://doi.org/10.1186/1687-1812-2013-269
|