DC 型均匀凸优化问题的最优性条件和全对偶
Optimality Conditons and Total Dualities for DC Type Evenly Convex Optimization Problems
DOI: 10.12677/AAM.2025.145228, PDF,   
作者: 陈泓烨:吉首大学数学与统计学院,湖南 吉首
关键词: 均匀凸优化问题最优性条件全对偶Evenly Vonvex Optimization Problem Optimality Condition Total Duality
摘要: 利用c-次微分概念,引入新的约束规范条件,给出了带DC型不等式的均匀凸优化问题的最优性条 件,同时利用均匀凸函数的性质,定义了原问题的Lagrange对偶问题,利用函数的c-共轭上图性 质,刻画了原问题与其Lagrange对偶问题之间的全对偶。
Abstract: By using the concept of c-subdifferential and introducing new constraint qualification-s, the optimality conditions for evenly convex optimization problems with DC type inequalities are given. At the same time, the Lagrange dual problem of the prime problem is defined by utilizing the properties of evenly convex functions. By utilizing the c-conjugate graph property of functions, the total dual problem between the prime problem and its Lagrange dual problem is depicted.
文章引用:陈泓烨. DC 型均匀凸优化问题的最优性条件和全对偶[J]. 应用数学进展, 2025, 14(5): 9-22. https://doi.org/10.12677/AAM.2025.145228

参考文献

[1] Dinh, N., Mordukhovich, B.S. and Nghia, T.T.A. (2009) Qualification and Optimality Condi- tions for DC Programs with Infinite Constraints. Acta Mathematica Vietnamica, 34, 125-155.
[2] Dinh, N., Nghia, T.T.A. and Vallet, G. (2010) A Closedness Condition and Its Applications to DC Programs with Convex Constraints. Optimization, 59, 541-560.
https://doi.org/10.1080/02331930801951348
[3] Dinh, N., Vallet, G. and Nghia, T.T.A. (2008) Farkas-Type Results and Duality for DC Pro- grams with Convex Constraints.Journal of Convex Analysis, 15, 235-262.
[4] Dinh, N., Mordukhovich, B. and Nghia, T.T.A. (2009) Subdifferentials of Value Functions and Optimality Conditions for DC and Bilevel Infinite and Semi-Infinite Programs. Mathematical Programming, 123, 101-138.
https://doi.org/10.1007/s10107-009-0323-4
[5] Hiriart-Urruty, J.-B. (1989) From Convex Optimization to Nonconvex Optimization. Neces- sary and Sufficient Conditions for Global Optimality. In: Clarke, F.H., Dem’yanov, V.F. and Giannessi, F., Eds., Nonsmooth Optimization and Related Topics, Springer, 219-239.
https://doi.org/10.1007/978-1-4757-6019-4 13
[6] Sun, X., Li, S. and Zhao, D. (2013) Duality and Farkas-Type Results for DC Infinite Program- ming with Inequality Constraints. Taiwanese Journal of Mathematics, 17, 1227-1244.
https://doi.org/10.11650/tjm.17.2013.2675
[7] Correa, R., L´opez, M.A. and P´erez-Aros, P. (2021) Necessary and Sufficient Optimality Con- ditions in DC Semi-Infinite Programming. SIAM Journal on Optimization, 31, 837-865.
https://doi.org/10.1137/19m1303320
[8] Mart´ınez-Legaz, J.E. and Seeger, A. (1992) A Formula on the Approximate Subdifferential of the Difference of Convex Functions. Bulletin of the Australian Mathematical Society, 45, 37-41.
https://doi.org/10.1017/s0004972700036984
[9] Urruty, J.B.H. and Lemar´echal, C. (1993) Convex Analysis and Minimization Algorithms. Springer-Verlag.
[10] An, L.T.H. and Tao, P.D. (2005) The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems. Annals of Operations Research, 133, 23-46.
https://doi.org/10.1007/s10479-004-5022-1
[11] Fajardo, M.D. and Vidal, J. (2023) On Fenchel c-Conjugate Dual Problems for DC Optimiza- tion: Characterizing Weak, Strong and Stable Strong Duality. Optimization, 73, 2473-2500.
https://doi.org/10.1080/02331934.2023.2230988
[12] Fajardo, M.D. and Vidal-Nunez, J. (2024) Lagrange Duality on DC Evenly Convex Optimiza- tion Problems via a Generalized Conjugation Scheme. Optimization Letters.
https://doi.org/10.1007/s11590-024-02167-0
[13] Fajardo, M.D. and Vidal, J. (2022) On Subdifferentials via a Generalized Conjugation Scheme: An Application to DC Problems and Optimality Conditions. Set-Valued and Variational Anal- ysis, 30, 1313-1331.
https://doi.org/10.1007/s11228-022-00644-1
[14] 魏俊林, 游曼雪. 一类DC复合优化问题的Fenchel C-conjugate对偶理论[J]. 内江师范学院学报, 2024, 39(8): 28-34.
[15] Mart´ınez-Legaz, J.E. and Vicente-P´erez, J. (2011) The E-Support Function of an E-Convex Set and Conjugacy for E-Convex Functions. Journal of Mathematical Analysis and Applications, 376, 602-612.
https://doi.org/10.1016/j.jmaa.2010.10.058
[16] Fajardo, M.D., Vicente-P´erez, J. and Rodr´ıguez, M.M.L. (2011) Infimal Convolution, c- Subdifferentiability, and Fenchel Duality in Evenly Convex Optimization. TOP, 20, 375-396.
https://doi.org/10.1007/s11750-011-0208-6
[17] Mart´ınez-Legaz, J.E. (2005) Generalized Convex Duality and Its Economic Applications. In: Hadjisavvas, N., Komlo´si, S. and Schaible, S., Eds., Nonconvex Optimization and Its Applica- tions, Kluwer Academic Publishers, 237-292.
https://doi.org/10.1007/0-387-23393-8 6
[18] Fang, D.H. and Zhao, X.P. (2014) Local and Global Optimality Conditions for DC Infinite Optimization Problems. Taiwanese Journal of Mathematics, 18, 817-834.
https://doi.org/10.11650/tjm.18.2014.3888
[19] Fang, D. and Chen, Z. (2013) Total Lagrange Duality for DC Infinite Optimization Problems. Fixed Point Theory and Applications, 2013, Article No. 269.
https://doi.org/10.1186/1687-1812-2013-269