[1]
|
Aranson, I.S. and Kramer, L. (2002) The World of the Complex Ginzburg-Landau Equation. Reviews of Modern Physics, 74, 99-143. https://doi.org/10.1103/revmodphys.74.99
|
[2]
|
Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Theory of Superconductivity. Physical Review, 108, 1175-1204. https://doi.org/10.1103/physrev.108.1175
|
[3]
|
Tinkham, M. (2004) Introduction to Superconductivity. Courier Corporation.
|
[4]
|
Ginzburg, V.L. and Landau, L.D. (2009) On the Theory of Superconductivity. Springer.
|
[5]
|
Ginibre, J. and Velo, G. (1996) The Cauchy Problem in Local Spaces for the Complex Ginzburg-Landau Equation I. Compactness Methods. Physica D: Nonlinear Phenomena, 95, 191-228. https://doi.org/10.1016/0167-2789(96)00055-3
|
[6]
|
Ginibre, J. and Velo, G. (1997) The Cauchy Problem in Local Spaces for the Complex Ginzburg-Landau Equation. Contraction Methods. Communications in Mathematical Physics, 187, 45-79. https://doi.org/10.1007/s002200050129
|
[7]
|
Temam, R. (1988) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag.
|
[8]
|
Levermore, C.D. and Oliver, M. (1996) The Complex Ginzburg-Landau Equation as a Model Problem. Dynamical Systems and Probabilistic Methods in Partial Differential Equations, 31, 141-190.
|
[9]
|
Bartuccelli, M., Constantin, P., Doering, C.R., Gibbon, J.D. and Gisselfa¨lt, M. (1990) On the Possibility of Soft and Hard Turbulence in the Complex Ginzburg-Landau Equation. Physica D: Nonlinear Phenomena, 44, 421-444. https://doi.org/10.1016/0167-2789(90)90156-j
|
[10]
|
Okazawa, N. and Yokota, T. (2002) Monotonicity Method Applied to the Complex Ginzburg- Landau and Related Equations. Journal of Mathematical Analysis and Applications, 267, 247-263. https://doi.org/10.1006/jmaa.2001.7770
|
[11]
|
Ogawa, T. and Yokota, T. (2004) Uniqueness and Inviscid Limits of Solutions for the Complex Ginzburg-Landau Equation in a Two-Dimensional Domain. Communications in Mathematical Physics, 245, 105-121. https://doi.org/10.1007/s00220-003-1004-4
|
[12]
|
Wu, J. (1998) The Inviscid Limit of the Complex Ginzburg-Landau Equation. Journal of Differential Equations, 142, 413-433. https://doi.org/10.1006/jdeq.1997.3347
|
[13]
|
Bechouche, P. and Ju¨ngel, A. (2000) Inviscid Limits of the Complex Ginzburg-Landau Equa- tion. Communications in Mathematical Physics, 214, 201-226. https://doi.org/10.1007/s002200000263
|
[14]
|
Wang, B. (2002) The Limit Behavior of Solutions for the Cauchy Problem of the Complex GinzburgEquation. Communications on Pure and Applied Mathematics, 55, 481-508. https://doi.org/10.1002/cpa.10024
|
[15]
|
Machihara, S. and Nakamura, Y. (2003) The Inviscid Limit for the Complex Ginzburg-Landau Equation. Journal of Mathematical Analysis and Applications, 281, 552-564. https://doi.org/10.1016/s0022-247x(03)00143-4
|
[16]
|
Chai, G. (2012) Positive Solutions for Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator. Boundary Value Problems, 2012, Article No. 18. https://doi.org/10.1186/1687-2770-2012-18
|
[17]
|
Chen, T., Liu, W. and Hu, Z. (2012) A Boundary Value Problem for Fractional Differential Equation with p-Laplacian Operator at Resonance. Nonlinear Analysis: Theory, Methods and Applications, 75, 3210-3217. https://doi.org/10.1016/j.na.2011.12.020
|
[18]
|
Gilbarg, D., Trudinger, N., et al. (1977) Elliptic Partial Differential Equations of Second Order. Springer.
|
[19]
|
Mastorakis, N.E. and Fathabadi, H. (2009) On the Solution of p-Laplacian for Non-Newtonian Fluid Flow. WSEAS Transactions on Mathematics, 8, 238-245.
|
[20]
|
[ Matei, A. (2000) First Eigenvalue for the p-Laplace Operator. Nonlinear Analysis: Theory, Methods and Applications, 39, 1051-1068. https://doi.org/10.1016/s0362-546x(98)00266-1
|
[21]
|
Zhang, Z. and Zhang, Z. (2022) Normalized Solutions to p-Laplacian Equations with Combined Nonlinearities. Nonlinearity, 35, 5621-5663. https://doi.org/10.1088/1361-6544/ac902c
|
[22]
|
Okazawa, N. and Yokota, T. (2002) Global Existence and Smoothing Effect for the Complex Ginzburg-Landau Equation with p-Laplacian. Journal of Differential Equations, 182, 541-576. https://doi.org/10.1006/jdeq.2001.4097
|
[23]
|
Arora, R. and Rˇadulescu, V.D. (2023) Combined Effects in Mixed Local-Nonlocal Stationary Problems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 155, 10-56. https://doi.org/10.1017/prm.2023.80
|
[24]
|
Biagi, S., Dipierro, S., Valdinoci, E. and Vecchi, E. (2023) A Faber-Krahn Inequality for Mixed Local and Nonlocal Operators. Journal d’Analyse Math´ematique, 150, 405-448. https://doi.org/10.1007/s11854-023-0272-5
|
[25]
|
Biagi, S. and Vecchi, E. (2025) On the Existence of a Second Positive Solution to Mixed Local- Nonlocal Concave-Convex Critical Problems. Nonlinear Analysis, 256, Article ID: 113795. https://doi.org/10.1016/j.na.2025.113795
|
[26]
|
Biswas, A., Modasiya, M. and Sen, A. (2022) Boundary Regularity of Mixed Local-Nonlocal Operators and Its Application. Annali di Matematica Pura ed Applicata, 202, 679-710. https://doi.org/10.1007/s10231-022-01256-0
|
[27]
|
De Filippis, C. and Mingione, G. (2022) Gradient Regularity in Mixed Local and Nonlocal Problems. Mathematische Annalen, 388, 261-328. https://doi.org/10.1007/s00208-022-02512-7
|
[28]
|
Garain, P. and Ukhlov, A. (2022) Mixed Local and Nonlocal Sobolev Inequalities with Extremal and Associated Quasilinear Singular Elliptic Problems. Nonlinear Analysis, 223, Article ID: 113022. https://doi.org/10.1016/j.na.2022.113022
|
[29]
|
Su, X., Valdinoci, E., Wei, Y. and Zhang, J. (2022) Regularity Results for Solutions of Mixed Local and Nonlocal Elliptic Equations. Mathematische Zeitschrift, 302, 1855-1878. https://doi.org/10.1007/s00209-022-03132-2
|
[30]
|
Maione, A., Mugnai, D. and Vecchi, E. (2023) Variational Methods for Nonpositive Mixed Local-Nonlocal Operators. Fractional Calculus and Applied Analysis, 26, 943-961. https://doi.org/10.1007/s13540-023-00147-2
|
[31]
|
Cazenave, T. (2003) Semilinear Schro¨dinger Equations. American Mathematical Society. https://doi.org/10.1090/cln/010
|
[32]
|
Moore, W. (2015) Schro¨dinger. Cambridge University Press.
|
[33]
|
Tsutsumi, M. and Fukuda, I. (1980) On Solutions of the Derivative Nonlinear Schro¨dinger Equation. Existence and Uniqueness Theorem. Funkcialag Ekvacioj, Serio Internacia, 23, 259- 277.
|
[34]
|
Fiorenza, A., Formica, M.R., Roskovec, T.G. and Soudsky´, F. (2021) Detailed Proof of Classical Gagliardo-Nirenberg Interpolation Inequality with Historical Remarks. Zeitschrift fu¨r Analysis und ihre Anwendungen, 40, 217-236. https://doi.org/10.4171/zaa/1681
|
[35]
|
Evans, L.C. (2022) Partial Differential Equations. American Mathematical Society.
|