含有混合耗散的复Ginzburg-Landau方程弱解的适定性和无粘极限
Well-Posedness and Inviscid Limit of Weak Solutions to CGL Equation with Mixed Dissipation Terms
摘要: 复Ginzburg-Landau (CGL)方程作为非平衡系统动力学的普适模型, 在量子流体动力学、 超导 理论及Bose-Einstein疑聚体等物理系统中具有重要应用, 适定性与渐近极限是其数学理论研究中 的重要方向。 本文针对具有混合耗散算子的CGL方程展开系统性研究。 通过混合耗散算子的正则 性分析与特定参数比率约束条件的构造, 确立L2解的唯一性, 井借助与耗散参数相关的截断函数及 能量估计方法, 揭示了耗散系数趋于0时, 从CGL方程到高阶非线性Schro¨dinger (NLS)方程的无 粘极限及其收敛速率。
Abstract: The complex Ginzburg-Landau (CGL) equation, as a universal model for non-equilibrium system dynamics, has important applications in physical systems such as quantum fluid dynamics, superconductivity theory, and Bose-Einstein condensates. Well-posedness and asymptotic limit are important directions in the study of mathematical theory. This article conducts a systematic study on the CGL equation with mixed dissipa- tive operators. By analyzing the regularity of the mixed dissipation operators and constructing specific parameter ratio constraints, the uniqueness of the L2 solution is established. With the help of truncation function and energy estimates related to dissipation parameters, the inviscid limit and convergence rate from CGL equation to high-order nonlinear Schro¨dinger (NLS) equation are obtained when the dissipation coefficients approaches to 0.
文章引用:郭甜甜. 含有混合耗散的复Ginzburg-Landau方程弱解的适定性和无粘极限[J]. 应用数学进展, 2025, 14(5): 244-261. https://doi.org/10.12677/AAM.2025.145253

参考文献

[1] Aranson, I.S. and Kramer, L. (2002) The World of the Complex Ginzburg-Landau Equation. Reviews of Modern Physics, 74, 99-143.
https://doi.org/10.1103/revmodphys.74.99
[2] Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Theory of Superconductivity. Physical Review, 108, 1175-1204.
https://doi.org/10.1103/physrev.108.1175
[3] Tinkham, M. (2004) Introduction to Superconductivity. Courier Corporation.
[4] Ginzburg, V.L. and Landau, L.D. (2009) On the Theory of Superconductivity. Springer.
[5] Ginibre, J. and Velo, G. (1996) The Cauchy Problem in Local Spaces for the Complex Ginzburg-Landau Equation I. Compactness Methods. Physica D: Nonlinear Phenomena, 95, 191-228.
https://doi.org/10.1016/0167-2789(96)00055-3
[6] Ginibre, J. and Velo, G. (1997) The Cauchy Problem in Local Spaces for the Complex Ginzburg-Landau Equation. Contraction Methods. Communications in Mathematical Physics, 187, 45-79.
https://doi.org/10.1007/s002200050129
[7] Temam, R. (1988) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag.
[8] Levermore, C.D. and Oliver, M. (1996) The Complex Ginzburg-Landau Equation as a Model Problem. Dynamical Systems and Probabilistic Methods in Partial Differential Equations, 31, 141-190.
[9] Bartuccelli, M., Constantin, P., Doering, C.R., Gibbon, J.D. and Gisselfa¨lt, M. (1990) On the Possibility of Soft and Hard Turbulence in the Complex Ginzburg-Landau Equation. Physica D: Nonlinear Phenomena, 44, 421-444.
https://doi.org/10.1016/0167-2789(90)90156-j
[10] Okazawa, N. and Yokota, T. (2002) Monotonicity Method Applied to the Complex Ginzburg- Landau and Related Equations. Journal of Mathematical Analysis and Applications, 267, 247-263.
https://doi.org/10.1006/jmaa.2001.7770
[11] Ogawa, T. and Yokota, T. (2004) Uniqueness and Inviscid Limits of Solutions for the Complex Ginzburg-Landau Equation in a Two-Dimensional Domain. Communications in Mathematical Physics, 245, 105-121.
https://doi.org/10.1007/s00220-003-1004-4
[12] Wu, J. (1998) The Inviscid Limit of the Complex Ginzburg-Landau Equation. Journal of Differential Equations, 142, 413-433.
https://doi.org/10.1006/jdeq.1997.3347
[13] Bechouche, P. and Ju¨ngel, A. (2000) Inviscid Limits of the Complex Ginzburg-Landau Equa- tion. Communications in Mathematical Physics, 214, 201-226.
https://doi.org/10.1007/s002200000263
[14] Wang, B. (2002) The Limit Behavior of Solutions for the Cauchy Problem of the Complex GinzburgEquation. Communications on Pure and Applied Mathematics, 55, 481-508.
https://doi.org/10.1002/cpa.10024
[15] Machihara, S. and Nakamura, Y. (2003) The Inviscid Limit for the Complex Ginzburg-Landau Equation. Journal of Mathematical Analysis and Applications, 281, 552-564.
https://doi.org/10.1016/s0022-247x(03)00143-4
[16] Chai, G. (2012) Positive Solutions for Boundary Value Problem of Fractional Differential Equation with p-Laplacian Operator. Boundary Value Problems, 2012, Article No. 18.
https://doi.org/10.1186/1687-2770-2012-18
[17] Chen, T., Liu, W. and Hu, Z. (2012) A Boundary Value Problem for Fractional Differential Equation with p-Laplacian Operator at Resonance. Nonlinear Analysis: Theory, Methods and Applications, 75, 3210-3217.
https://doi.org/10.1016/j.na.2011.12.020
[18] Gilbarg, D., Trudinger, N., et al. (1977) Elliptic Partial Differential Equations of Second Order. Springer.
[19] Mastorakis, N.E. and Fathabadi, H. (2009) On the Solution of p-Laplacian for Non-Newtonian Fluid Flow. WSEAS Transactions on Mathematics, 8, 238-245.
[20] [ Matei, A. (2000) First Eigenvalue for the p-Laplace Operator. Nonlinear Analysis: Theory, Methods and Applications, 39, 1051-1068.
https://doi.org/10.1016/s0362-546x(98)00266-1
[21] Zhang, Z. and Zhang, Z. (2022) Normalized Solutions to p-Laplacian Equations with Combined Nonlinearities. Nonlinearity, 35, 5621-5663.
https://doi.org/10.1088/1361-6544/ac902c
[22] Okazawa, N. and Yokota, T. (2002) Global Existence and Smoothing Effect for the Complex Ginzburg-Landau Equation with p-Laplacian. Journal of Differential Equations, 182, 541-576.
https://doi.org/10.1006/jdeq.2001.4097
[23] Arora, R. and Rˇadulescu, V.D. (2023) Combined Effects in Mixed Local-Nonlocal Stationary Problems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 155, 10-56.
https://doi.org/10.1017/prm.2023.80
[24] Biagi, S., Dipierro, S., Valdinoci, E. and Vecchi, E. (2023) A Faber-Krahn Inequality for Mixed Local and Nonlocal Operators. Journal d’Analyse Math´ematique, 150, 405-448.
https://doi.org/10.1007/s11854-023-0272-5
[25] Biagi, S. and Vecchi, E. (2025) On the Existence of a Second Positive Solution to Mixed Local- Nonlocal Concave-Convex Critical Problems. Nonlinear Analysis, 256, Article ID: 113795.
https://doi.org/10.1016/j.na.2025.113795
[26] Biswas, A., Modasiya, M. and Sen, A. (2022) Boundary Regularity of Mixed Local-Nonlocal Operators and Its Application. Annali di Matematica Pura ed Applicata, 202, 679-710.
https://doi.org/10.1007/s10231-022-01256-0
[27] De Filippis, C. and Mingione, G. (2022) Gradient Regularity in Mixed Local and Nonlocal Problems. Mathematische Annalen, 388, 261-328.
https://doi.org/10.1007/s00208-022-02512-7
[28] Garain, P. and Ukhlov, A. (2022) Mixed Local and Nonlocal Sobolev Inequalities with Extremal and Associated Quasilinear Singular Elliptic Problems. Nonlinear Analysis, 223, Article ID: 113022.
https://doi.org/10.1016/j.na.2022.113022
[29] Su, X., Valdinoci, E., Wei, Y. and Zhang, J. (2022) Regularity Results for Solutions of Mixed Local and Nonlocal Elliptic Equations. Mathematische Zeitschrift, 302, 1855-1878.
https://doi.org/10.1007/s00209-022-03132-2
[30] Maione, A., Mugnai, D. and Vecchi, E. (2023) Variational Methods for Nonpositive Mixed Local-Nonlocal Operators. Fractional Calculus and Applied Analysis, 26, 943-961.
https://doi.org/10.1007/s13540-023-00147-2
[31] Cazenave, T. (2003) Semilinear Schro¨dinger Equations. American Mathematical Society.
https://doi.org/10.1090/cln/010
[32] Moore, W. (2015) Schro¨dinger. Cambridge University Press.
[33] Tsutsumi, M. and Fukuda, I. (1980) On Solutions of the Derivative Nonlinear Schro¨dinger Equation. Existence and Uniqueness Theorem. Funkcialag Ekvacioj, Serio Internacia, 23, 259- 277.
[34] Fiorenza, A., Formica, M.R., Roskovec, T.G. and Soudsky´, F. (2021) Detailed Proof of Classical Gagliardo-Nirenberg Interpolation Inequality with Historical Remarks. Zeitschrift fu¨r Analysis und ihre Anwendungen, 40, 217-236.
https://doi.org/10.4171/zaa/1681
[35] Evans, L.C. (2022) Partial Differential Equations. American Mathematical Society.