| [1] | Aranson, I.S. and Kramer, L. (2002) The World of the Complex Ginzburg-Landau Equation. Reviews of Modern Physics,  74,  99-143. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [2] | Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Theory of Superconductivity. Physical Review, 108, 1175-1204. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [3] | Tinkham, M. (2004) Introduction to Superconductivity. Courier Corporation. | 
                     
                                
                                    
                                        | [4] | Ginzburg, V.L. and Landau, L.D. (2009) On the Theory of Superconductivity. Springer. | 
                     
                                
                                    
                                        | [5] | Ginibre, J. and Velo, G. (1996) The Cauchy Problem in Local Spaces for the Complex Ginzburg-Landau Equation I. Compactness Methods. Physica D: Nonlinear Phenomena, 95, 191-228. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Ginibre, J. and Velo, G. (1997) The Cauchy Problem in Local Spaces for the Complex Ginzburg-Landau Equation. Contraction Methods. Communications in Mathematical Physics, 187, 45-79. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Temam,  R.  (1988)  Infinite-Dimensional  Dynamical  Systems  in  Mechanics  and  Physics. Springer-Verlag. | 
                     
                                
                                    
                                        | [8] | Levermore, C.D. and Oliver, M. (1996) The Complex Ginzburg-Landau Equation as a Model Problem. Dynamical Systems and Probabilistic Methods in Partial Differential Equations, 31, 141-190. | 
                     
                                
                                    
                                        | [9] | Bartuccelli, M., Constantin, P., Doering, C.R., Gibbon, J.D. and Gisselfa¨lt, M. (1990) On the Possibility of Soft and Hard Turbulence in the Complex Ginzburg-Landau Equation. Physica D: Nonlinear Phenomena, 44, 421-444. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Okazawa, N. and Yokota, T. (2002) Monotonicity Method Applied to the Complex Ginzburg- Landau and Related Equations. Journal of Mathematical Analysis and Applications, 267, 247-263. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Ogawa, T. and Yokota, T. (2004) Uniqueness and Inviscid Limits of Solutions for the Complex Ginzburg-Landau Equation in a Two-Dimensional Domain. Communications in Mathematical Physics, 245, 105-121. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Wu,  J. (1998) The Inviscid Limit of the Complex Ginzburg-Landau Equation. Journal of Differential Equations, 142, 413-433. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Bechouche, P. and Ju¨ngel, A. (2000) Inviscid Limits of the Complex Ginzburg-Landau Equa- tion. Communications in Mathematical Physics, 214, 201-226. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Wang, B. (2002) The Limit Behavior of Solutions for the Cauchy Problem of the Complex GinzburgEquation. Communications on Pure and Applied Mathematics, 55, 481-508. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [15] | Machihara, S. and Nakamura, Y. (2003) The Inviscid Limit for the Complex Ginzburg-Landau Equation. Journal of Mathematical Analysis and Applications, 281, 552-564. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [16] | Chai,  G. (2012) Positive  Solutions for  Boundary  Value  Problem of Fractional Differential Equation with p-Laplacian Operator. Boundary Value Problems, 2012, Article No. 18. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Chen, T., Liu, W. and Hu, Z. (2012) A Boundary Value Problem for Fractional Differential Equation with p-Laplacian Operator at Resonance. Nonlinear Analysis: Theory, Methods and Applications, 75, 3210-3217. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | Gilbarg, D., Trudinger, N., et al. (1977) Elliptic Partial Differential Equations of Second Order. Springer. | 
                     
                                
                                    
                                        | [19] | Mastorakis, N.E. and Fathabadi, H. (2009) On the Solution of p-Laplacian for Non-Newtonian Fluid Flow. WSEAS Transactions on Mathematics, 8, 238-245. | 
                     
                                
                                    
                                        | [20] | [ Matei, A. (2000) First Eigenvalue for the p-Laplace Operator. Nonlinear Analysis: Theory, Methods and Applications, 39, 1051-1068. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | Zhang, Z. and Zhang, Z. (2022) Normalized Solutions to p-Laplacian Equations with Combined Nonlinearities. Nonlinearity, 35, 5621-5663. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | Okazawa, N. and Yokota, T. (2002) Global Existence and Smoothing Effect for the Complex Ginzburg-Landau Equation with p-Laplacian. Journal of Differential Equations, 182, 541-576. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Arora, R. and Rˇadulescu, V.D. (2023) Combined Effects in Mixed Local-Nonlocal Stationary Problems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 155, 10-56. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | Biagi, S., Dipierro, S., Valdinoci, E. and Vecchi, E. (2023) A Faber-Krahn Inequality for Mixed Local and Nonlocal Operators. Journal d’Analyse Math´ematique, 150, 405-448. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Biagi, S. and Vecchi, E. (2025) On the Existence of a Second Positive Solution to Mixed Local- Nonlocal Concave-Convex Critical Problems. Nonlinear Analysis, 256, Article ID: 113795. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Biswas, A., Modasiya, M. and Sen, A. (2022) Boundary Regularity of Mixed Local-Nonlocal Operators and Its Application. Annali di Matematica Pura ed Applicata, 202, 679-710. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [27] | De Filippis, C. and Mingione, G. (2022) Gradient Regularity in Mixed Local and Nonlocal Problems. Mathematische Annalen, 388, 261-328. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Garain, P. and Ukhlov, A. (2022) Mixed Local and Nonlocal Sobolev Inequalities with Extremal and Associated Quasilinear Singular Elliptic Problems. Nonlinear Analysis, 223, Article ID: 113022. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Su, X., Valdinoci, E., Wei, Y. and Zhang, J. (2022) Regularity Results for Solutions of Mixed Local and Nonlocal Elliptic Equations. Mathematische Zeitschrift, 302, 1855-1878. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [30] | Maione, A., Mugnai, D. and Vecchi, E. (2023) Variational Methods for Nonpositive Mixed Local-Nonlocal Operators. Fractional Calculus and Applied Analysis, 26, 943-961. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [31] | Cazenave, T. (2003) Semilinear Schro¨dinger Equations. American Mathematical Society. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [32] | Moore, W. (2015) Schro¨dinger. Cambridge University Press. | 
                     
                                
                                    
                                        | [33] | Tsutsumi, M. and Fukuda, I. (1980) On Solutions of the Derivative Nonlinear Schro¨dinger Equation. Existence and Uniqueness Theorem. Funkcialag Ekvacioj, Serio Internacia, 23, 259- 277. | 
                     
                                
                                    
                                        | [34] | Fiorenza, A., Formica, M.R., Roskovec, T.G. and Soudsky´, F. (2021) Detailed Proof of Classical Gagliardo-Nirenberg Interpolation Inequality with Historical Remarks. Zeitschrift fu¨r Analysis und ihre Anwendungen, 40, 217-236. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [35] | Evans, L.C. (2022) Partial Differential Equations. American Mathematical Society. |