| [1] | Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan and Else- vier. | 
                     
                                
                                    
                                        | [2] | Boesch, F.T., Suffel, C. and Tindell, R. (1977) The Spanning Subgraphs of Eulerian Graphs. Journal of Graph Theory, 1, 79-84. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [3] | Pulleyblank, W.R. (1979) A Note on Graphs Spanned by Eulerian Graphs. Journal of Graph Theory, 3, 309-310. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [4] | Catlin, P.A. (1992) Supereulerian Graphs: A Survey. Journal of Graph Theory, 16, 177-196. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Lai, H.J., Shao, Y.H. and Yan, H.Y. (2013) An Update on Supereulerian Graphs. World Scientific and Engineering Academy and Society Transaction on Mathematics, 12, 926-940. | 
                     
                                
                                    
                                        | [6] | Chen, Z. (2016) Snarks, Hypohamiltonian Graphs and Non-Supereulerian Graphs. Graphs and Combinatorics, 32, 2267-2273. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Li, X.M., Lei, L., Lai, H. and Zhang, M. (2014) Supereulerian Graphs and the Petersen Graph. Acta Mathematica Sinica, English Series, 30, 291-304. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [8] | Lai, H., Li, H., Shao, Y. and Zhan, M. (2010) On 3-Edge-Connected Supereulerian Graphs. Graphs and Combinatorics, 27, 207-214. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [9] | Harary, F. and Nash-Williams, C.S.J.A. (1965) On Eulerian and Hamiltonian Graphs and Line Graphs. Canadian Mathematical Bulletin, 8, 701-709. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Chartrand, G. and Wall, C.E. (1973) On the Hamiltonian Index of a Graph. Studia Scientiarum Mathematicarum Hungarica, 8, 43-48. | 
                     
                                
                                    
                                        | [11] | Bertossi,  A.A. (1981) The Edge Hamiltonian Path Problem Is NP-Complete. Information Processing Letters, 13, 157-159. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Saraˇzin, M.L. (1994) A Simple Upper Bound for the Hamiltonian Index of a Graph. Discrete Mathematics, 134, 85-91. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Xiong, L.M. and Yan, H.Y. (2005) On the Supereulerian Index of a Graph. Journal of Beijing Institute of Technology, 14, 453-457. | 
                     
                                
                                    
                                        | [14] | Han, L., Lai, H., Xiong, L. and Yan, H. (2010) The Chv´atal-Erd¨os Condition for Supereulerian Graphs and the Hamiltonian Index. Discrete Mathematics, 310, 2082-2090. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [15] | Xiong, L.M. and Li, M.C. (2010) Supereulerian Index Is Stable under Contractions and Clo- sures. Ars Combinatoria, 97, 129-142. |