最大密度限制下可压欧拉方程高阶精度数值格式的耗散测度值解
Dissipative Measure-Valued Solutions of High Order Numerical Schemes for Compressible Euler Equations with Maximum Density Constraints
摘要: 本文主要考虑带有最大密度限制的可压欧拉方程组的初边值问题,这种密度限制依据一个奇性压强给出。文章通过引入带有截断参数δ>0的近似压强pδ,并建立合适的先验估计,得到了欧拉方程数值格式与其原方程的一致性公式。同时,研究了δ→0时的极限,证明数值解可以收敛到耗散测度值解。
Abstract: This paper primarily focuses on the initial-boundary value problem of the compressible Euler equations with a maximum density constraint, where the density constraint is given by a singular pressure. By introducing an approximate pressure pδ(p) with a truncation parameterδ>0. and establishing appropriate the priori estimates, the paper derives the consistency formulas between the numerical schemes of the Euler equations and the original equations. Moreover, the limit as δ→0 is investigated, and it is proven that the numerical solutions can converge to dissipative measure-valued solutions.
文章引用:皇晓燕, 华嘉乐. 最大密度限制下可压欧拉方程高阶精度数值格式的耗散测度值解[J]. 理论数学, 2025, 15(5): 241-254. https://doi.org/10.12677/PM.2025.155173

参考文献

[1] Degond, P., Hua, J. and Navoret, L. (2011) Numerical Simulations of the Euler System with Congestion Constraint. Journal of Computational Physics, 230, 8057-8088.
https://doi.org/10.1016/j.jcp.2011.07.010
[2] Degond, P., Navoret, L., Bon, R. and Sanchez, D. (2009) Congestion in a Macroscopic Model of Self-Driven Particles Modeling Gregariousness. Journal of Statistical Physics, 138, 85-125.
https://doi.org/10.1007/s10955-009-9879-x
[3] Degond, P. and Hua, J. (2013) Self-Organized Hydrodynamics with Congestion and Path Formation in Crowds. Journal of Computational Physics, 237, 299-319.
https://doi.org/10.1016/j.jcp.2012.11.033
[4] Perrin, C. and Saleh, K. (2022) Numerical Staggered Schemes for the Free-Congested Navier- Stokes Equations. SIAM Journal on Numerical Analysis, 60, 1824-1852.
https://doi.org/10.1137/21m1436488
[5] Perrin, C. and Zatorska, E. (2015) Free/Congested Two-Phase Model from Weak Solutions to Multi-Dimensional Compressible Navier-Stokes Equations. Communications in Partial Differ- ential Equations, 40, 1558-1589.
https://doi.org/10.1080/03605302.2015.1014560
[6] 李婷婷, 华嘉乐. 带最大密度限制的Navier-Stokes方程的耗散测度值解[J]. 应用数学进展, 2023, 12(5): 2263-2273.
[7] Feireisl, E., Gwiazda, P., Swierczewska-Gwiazda, A. and Wiedemann, E. (2016) Dissipative Measure-Valued Solutions to the Compressible Navier-Stokes System. Calculus of Variations and Partial Differential Equations, 55, Article No 141.
https://doi.org/10.1007/s00526-016-1089-1
[8] Feireisl, E., Lukaoova-Medvidova, M. and Mizerova, H. (2019) Convergence of Finite Volume Schemes for the Euler Equations via Dissipative Measure-Valued Solutions. Foundations of Computational Mathematics, 20, 923-966.
https://doi.org/10.1007/s10208-019-09433-z
[9] Feireisl, E. and Lukaoova-Medvidova, M. (2017) Convergence of a Mixed Finite Element- Finite Volume Scheme for the Isentropic Navier-Stokes System via Dissipative Measure-Valued Solutions. Foundations of Computational Mathematics, 18, 703-730.
https://doi.org/10.1007/s10208-017-9351-2
[10] Fjordholm, U. (2013) High-Order Accurate Entropy Stable Numerical Schemes for Hyperbolic Conservation Laws. ETH Zurich Dissertation No. 21025.
[11] Fjordholm, U.S., Mishra, S. and Tadmor, E. (2012) Arbitrarily High-Order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws. SIAM Journal on Numerical Analysis, 50, 544-573.
https://doi.org/10.1137/110836961
[12] 皇晓燕, 华嘉乐. 可压欧拉方程高精度数值格式耗散测度值解的收敛性[J]. 理论数学, 2025, 15(4): 458-471.
[13] Pedregal, P. (1997) Parametrized Measures and Variational Principles. Birkhauser Basel.
[14] 李婷婷. 带最大密度限制的流体方程的耗散测度值解[D]: [硕士学位论文]. 上海: 东华大学, 2023.