[1]
|
Degond, P., Hua, J. and Navoret, L. (2011) Numerical Simulations of the Euler System with
Congestion Constraint. Journal of Computational Physics, 230, 8057-8088. https://doi.org/10.1016/j.jcp.2011.07.010
|
[2]
|
Degond, P., Navoret, L., Bon, R. and Sanchez, D. (2009) Congestion in a Macroscopic Model
of Self-Driven Particles Modeling Gregariousness. Journal of Statistical Physics, 138, 85-125.
https://doi.org/10.1007/s10955-009-9879-x
|
[3]
|
Degond, P. and Hua, J. (2013) Self-Organized Hydrodynamics with Congestion and Path
Formation in Crowds. Journal of Computational Physics, 237, 299-319.
https://doi.org/10.1016/j.jcp.2012.11.033
|
[4]
|
Perrin, C. and Saleh, K. (2022) Numerical Staggered Schemes for the Free-Congested Navier-
Stokes Equations. SIAM Journal on Numerical Analysis, 60, 1824-1852.
https://doi.org/10.1137/21m1436488
|
[5]
|
Perrin, C. and Zatorska, E. (2015) Free/Congested Two-Phase Model from Weak Solutions to
Multi-Dimensional Compressible Navier-Stokes Equations. Communications in Partial Differ-
ential Equations, 40, 1558-1589. https://doi.org/10.1080/03605302.2015.1014560
|
[6]
|
李婷婷, 华嘉乐. 带最大密度限制的Navier-Stokes方程的耗散测度值解[J]. 应用数学进展, 2023, 12(5): 2263-2273.
|
[7]
|
Feireisl, E., Gwiazda, P., Swierczewska-Gwiazda, A. and Wiedemann, E. (2016) Dissipative
Measure-Valued Solutions to the Compressible Navier-Stokes System. Calculus of Variations
and Partial Differential Equations, 55, Article No 141.
https://doi.org/10.1007/s00526-016-1089-1
|
[8]
|
Feireisl, E., Lukaoova-Medvidova, M. and Mizerova, H. (2019) Convergence of Finite Volume
Schemes for the Euler Equations via Dissipative Measure-Valued Solutions. Foundations of
Computational Mathematics, 20, 923-966. https://doi.org/10.1007/s10208-019-09433-z
|
[9]
|
Feireisl, E. and Lukaoova-Medvidova, M. (2017) Convergence of a Mixed Finite Element-
Finite Volume Scheme for the Isentropic Navier-Stokes System via Dissipative Measure-Valued
Solutions. Foundations of Computational Mathematics, 18, 703-730.
https://doi.org/10.1007/s10208-017-9351-2
|
[10]
|
Fjordholm, U. (2013) High-Order Accurate Entropy Stable Numerical Schemes for Hyperbolic
Conservation Laws. ETH Zurich Dissertation No. 21025.
|
[11]
|
Fjordholm, U.S., Mishra, S. and Tadmor, E. (2012) Arbitrarily High-Order Accurate Entropy
Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws. SIAM Journal
on Numerical Analysis, 50, 544-573. https://doi.org/10.1137/110836961
|
[12]
|
皇晓燕, 华嘉乐. 可压欧拉方程高精度数值格式耗散测度值解的收敛性[J]. 理论数学, 2025, 15(4): 458-471.
|
[13]
|
Pedregal, P. (1997) Parametrized Measures and Variational Principles. Birkhauser Basel.
|
[14]
|
李婷婷. 带最大密度限制的流体方程的耗散测度值解[D]: [硕士学位论文]. 上海: 东华大学, 2023.
|