学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 15 No. 5 (May 2025)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
相对于余挠对的Gorenstein投射表示
Gorenstein Projective Representations Relative to Cotorsion Pairs
DOI:
10.12677/PM.2025.155171
,
PDF
,
,
,
被引量
作者:
连许贤
:西北师范大学,数学与统计学院,甘肃 兰州
关键词:
箭图
;
余挠对
;
相对于余挠对的Gorenstein投射表示
;
Quiver
;
Cotorsion Pairs
;
Gorenstein Projective Representations with Respect to Cotorsion Pairs
摘要:
设 Q 是一个有限无圈箭图,R是一个环,Rep(Q,R)是 Q 的左 R- 模表示范畴。本文描述了 Rep(Q,R) 中相对于余挠对的 Gorenstein 投射表示。具体地,我们证明了X∈Rep(Q,R) 是相对于(A,B)的 Gorenstein 投射表示当且仅当对任意的i∈𝑄
0
,
φ
i
X
:
⨁
a
∈
Q
1
∗
→
i
X
(
s
(
a
)
)
→
X
(
i
)
是单同态,并且X(i),Cokerφ
i
X
是相对于 (A,B)的Gorenstein投射模.
Abstract:
Let Q be a finite acyclic quiver, R a ring, and Rep(Q,R) the category of left R-module representations of Q. This paper characterizes Gorenstein projective representations in Rep(Q, R) relative to cotorsion pairs. Specifically, we prove that a representation X∈Rep(Q, R) is Gorenstein projective relative to (A, B) if and only if} for every vertex i∈Q
0
, the canonical morphism
φ
i
X
:
⨁
a
∈
Q
1
∗
→
i
X
(
s
(
a
)
)
→
X
(
i
)
is a monomorphism, and both X(i) and Coker φ
i
X
are Gorenstein projective modules relative to (A,B).
文章引用:
连许贤. 相对于余挠对的Gorenstein投射表示[J]. 理论数学, 2025, 15(5): 221-231.
https://doi.org/10.12677/PM.2025.155171
参考文献
[1]
Enochs, E.E. and Herzog, I. (1999) A Homotopy of Quiver Morphisms with Applications to Representations. Canadian Journal of Mathematics, 51, 294-308.
https://doi.org/10.4153/cjm-1999-015-0
[2]
Enochs, E. and Estrada, S. (2005) Projective Representations of Quivers. Communications in Algebra, 33, 3467-3478.
https://doi.org/10.1081/agb-200058181
[3]
Eshraghi, H., Hafezi, R. and Salarian, S. (2013) Total Acyclicity for Complexes of Represen- tations of Quivers. Communications in Algebra, 41, 4425-4441.
https://doi.org/10.1080/00927872.2012.701682
[4]
Xu, A. (2017) Gorenstein Modules and Gorenstein Model Structures. Glasgow Mathematical Journal, 59, 685-703.
https://doi.org/10.1017/s0017089516000483
[5]
Holm, H. and Jorgensen, P. (2019) Cotorsion Pairs in Categories of Quiver Representations. Kyoto Journal of Mathematics, 59, 575-606.
https://doi.org/10.1215/21562261-2018-0018
[6]
Asadollahi, J., Eshraghi, H., Hafezi, R. and Salarian, S. (2011) On the Homotopy Categories of Projective and Injective Representations of Quivers. Journal of Algebra, 346, 101-115.
https://doi.org/10.1016/j.jalgebra.2011.08.028
[7]
Enochs, E.E. and Jenda, O.M.G. (2000) Relative Homological Algebra. In: De Gruyter Expositions in Mathematics, Vol. 30, Walter de Gruyter & Co.
投稿
为你推荐
友情链接
科研出版社
开放图书馆