量子液滴的非线性 Thouless 泵浦
Nonlinear Thouless Pumping in Quantum Droplet
DOI: 10.12677/APP.2025.155060, PDF,   
作者: 陈春美:浙江师范大学物理与电子信息工程学院, 浙江 金华
关键词: 非线性 Thouless 泵浦量子液滴陈数Nonlinear Thouless Pumping Quantum Droplet Chern Number
摘要: 非线性 Thouless 泵浦是对传统 Thouless 泵浦理论的重要拓展,它揭示了非线性效应对拓扑系统中波包演化的影响。量子液滴作为超冷原子领域的新兴物态,因其在极稀薄环境中仍能稳定存在的独特性质,成为当前研究的焦点。因此,对量子液滴在超晶格中的非线性 Thouless 泵浦的研究具有极高的学术价值和应用前景。本文给出了量子液滴在不同相互作用强度下的非线性 Thouless 泵浦图。发现量子液滴中非线性项能够促使波包形成稳定的孤子结构,这些孤子在拓扑保护的作用下实现了空间上的拓扑输运,输运距离与系统的陈数紧密相关。随着非线性效应强度的增加,孤子不仅稳定存在,还发生了能带间的耦合,导致孤子在不同能带之间发生拉比振荡,影响了波包的传输行为。此外,本文通过改变相互作用系数,深入研究了量子液滴的陈数与相互作用强度之间的关系,得到了陈数随着相互作用系数的增大而增大,但是相互作用项对陈数的影响相对有限的结论。
Abstract: Nonlinear Thouless pumping represents a significant extension of the conventional Thouless pumping theory, revealing the influence of nonlinear effects on wave-packet evolution in topological systems. Quantum droplets, as an emerging quantum state in ultracold atomic systems, have become a focal point of current research due to their unique ability to remain stable in extremely dilute environments. Therefore, investigating the nonlinear Thouless pumping of quantum droplets in superlattices holds substantial academic value and application potential. This paper presents the nonlinear Thouless pumping diagrams of quantum droplets under varying interaction strengths. It is found that the nonlinear terms in quantum droplets facilitate the formation of stable solitonic structures, which achieve spatially quantized topological transport under topological protection, with the transport distance closely tied to the system’s Chern number. As the strength of nonlinearity increases, solitons not only remain stable but also exhibit interband coupling, leading to Rabi oscillations between distinct energy bands that modify the wave-packet dynamics. Furthermore, by tuning the interaction coefficients, this work systematically explores the relationship between the Chern number and interaction strength in quantum droplets. The results demon- strate that while the Chern number increases with interaction strength, the impact of nonlinear interactions on the Chern number remains relatively limited.
文章引用:陈春美. 量子液滴的非线性 Thouless 泵浦[J]. 应用物理, 2025, 15(5): 545-557. https://doi.org/10.12677/APP.2025.155060

参考文献

[1] Klitzing, K.V., Dorda, G. and Pepper, M. (1980) New Method for High-Accuracy Determi- nation of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45, 494-497.
https://doi.org/10.1103/physrevlett.45.494
[2] Raghu, S. and Haldane, F.D.M. (2008) Analogs of Quantum-Hall-Effect Edge States in Pho- tonic Crystals. Physical Review A, 78, Article 033834.
https://doi.org/10.1103/physreva.78.033834
[3] Wang, Z., Chong, Y., Joannopoulos, J.D. and Soljačić, M. (2009) Observation of Unidirectional Backscattering-Immune Topological Electromagnetic States. Nature, 461, 772-775.
https://doi.org/10.1038/nature08293
[4] Rechtsman, M.C., Zeuner, J.M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., et al.(2013) Photonic Floquet Topological Insulators. Nature, 496, 196-200.
https://doi.org/10.1038/nature12066
[5] Hafezi, M., Mittal, S., Fan, J., Migdall, A. and Taylor, J.M. (2013) Imaging Topological Edge States in Silicon Photonics. Nature Photonics, 7, 1001-1005.
https://doi.org/10.1038/nphoton.2013.274
[6] Atala, M., Aidelsburger, M., Barreiro, J.T., Abanin, D., Kitagawa, T., Demler, E., et al. (2013) Direct Measurement of the Zak Phase in Topological Bloch Bands. Nature Physics, 9, 795-800.
https://doi.org/10.1038/nphys2790
[7] Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D., et al. (2014) Experimental Realization of the Topological Haldane Model with Ultracold Fermions. Nature, 515, 237-240.
https://doi.org/10.1038/nature13915
[8] Ningyuan, J., Owens, C., Sommer, A., Schuster, D. and Simon, J. (2015) Time- and Site- Resolved Dynamics in a Topological Circuit. Physical Review X, 5, Article 021031.
https://doi.org/10.1103/physrevx.5.021031
[9] Nalitov, A.V., Malpuech, G., Terças, H. and Solnyshkov, D.D. (2015) Spin-Orbit Coupling and the Optical Spin Hall Effect in Photonic Graphene. Physical Review Letters, 114, Article 116401.
https://doi.org/10.1103/physrevlett.114.026803
[10] Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J.T., Nascimbène, S., et al. (2014) Measuring the Chern Number of Hofstadter Bands with Ultracold Bosonic Atoms.Nature Physics, 11, 162-166.
https://doi.org/10.1038/nphys3171
[11] Karzig, T., Bardyn, C., Lindner, N.H. and Refael, G. (2015) Topological Polaritons. Physical Review X, 5, Article 031001.
https://doi.org/10.1103/physrevx.5.031001
[12] Klembt, S., Harder, T.H., Egorov, O.A., Winkler, K., Ge, R., Bandres, M.A., et al. (2018) Exciton-Polariton Topological Insulator. Nature, 562, 552-556.
https://doi.org/10.1038/s41586-018-0601-5
[13] Jürgensen, M., Mukherjee, S. and Rechtsman, M.C. (2021) Quantized Nonlinear Thouless Pumping. Nature, 596, 63-67.
https://doi.org/10.1038/s41586-021-03688-9
[14] Fu, Q., Wang, P., Kartashov, Y.V., Konotop, V.V. and Ye, F. (2022) Nonlinear Thouless Pumping: Solitons and Transport Breakdown. Physical Review Letters, 128, Article 154101.
https://doi.org/10.1103/physrevlett.128.154101
[15] Sun, Y., Shan, Z., Tian, Z., Chen, Q. and Zhang, X. (2024) Two-Dimensional Non-Abelian Thouless Pump. Nature Communications, 15, Article No. 9311.
https://doi.org/10.1038/s41467-024-53741-0
[16] Liu, Y., Zhang, Y., Shi, Y., Liu, T., Lu, C., Wang, Y., et al. (2025) Interplay between Dis- order and Topology in Thouless Pumping on a Superconducting Quantum Processor. Nature Communications, 16, Article No. 108.
https://doi.org/10.1038/s41467-024-55343-2
[17] Kadau, H., Schmitt, M., Wenzel, M., Wink, C., Maier, T., Ferrier-Barbut, I., et al. (2016) Observing the Rosensweig Instability of a Quantum Ferrofluid. Nature, 530, 194-197.
https://doi.org/10.1038/nature16485
[18] Semeghini, G., Ferioli, G., Masi, L., Mazzinghi, C., Wolswijk, L., Minardi, F., et al. (2018) Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Physical Review Letters, 120, Article 235301.
https://doi.org/10.1103/physrevlett.120.235301
[19] Dirac, P.A.M. (1926) On the Theory of Quantum Mechanics. Proceedings of the Royal Society of London. Series A, 112, 661-677.
[20] Astrakharchik, G.E. and Malomed, B.A. (2018) Dynamics of One-Dimensional Quantum Droplets. Physical Review A, 98, Article 013631.
https://doi.org/10.1103/physreva.98.013631
[21] Li, Y., Chen, Z., Luo, Z., Huang, C., Tan, H., Pang, W., et al. (2018) Two-Dimensional Vortex Quantum Droplets. Physical Review A, 98, Article 063602.
https://doi.org/10.1103/physreva.98.063602
[22] Dong, L. and Kartashov, Y.V. (2021) Rotating Multidimensional Quantum Droplets. Physical Review Letters, 126, Article 244101.
https://doi.org/10.1103/physrevlett.126.244101
[23] Stürmer, P., Tengstrand, M.N., Sachdeva, R. and Reimann, S.M. (2021) Breathing Mode in Two-Dimensional Binary Self-Bound Bose-Gas Droplets. Physical Review A, 103, Article 053302.
https://doi.org/10.1103/physreva.103.053302
[24] Otajonov, S.R., Tsoy, E.N. and Abdullaev, F.K. (2020) Variational Approximation for Two- Dimensional Quantum Droplets. Physical Review E, 102, Article 062217.
https://doi.org/10.1103/physreve.102.062217
[25] Navadeh-Toupchi, M., Takemura, N., Anderson, M.D., Oberli, D.Y. and Portella-Oberli, M.T. (2019) Polaritonic Cross Feshbach Resonance. Physical Review Letters, 122, Article 047402.
https://doi.org/10.1103/physrevlett.122.047402
[26] Sun, Y., Yoon, Y., Steger, M., Liu, G., Pfeiffer, L.N., West, K., et al. (2017) Direct Measure- ment of Polariton-Polariton Interaction Strength. Nature Physics, 13, 870-875.
https://doi.org/10.1038/nphys4148
[27] Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M.T. and Deveaud, B. (2014) Polari- tonic Feshbach Resonance. Nature Physics, 10, 500-504.
https://doi.org/10.1038/nphys2999
[28] Gross, E.P. (1961) Structure of a Quantized Vortex in Boson Systems. Il Nuovo Cimento, 20, 454-477.
https://doi.org/10.1007/bf02731494
[29] Pitaevskii, L.P. (1961) Vortex Lines in an Imperfect Bose Gas. Soviet Physics JETP, 13, 451-454.
[30] Petrov, D.S. and Astrakharchik, G.E. (2016) Ultradilute Low-Dimensional Liquids. Physical Review Letters, 117, Article 100401.
https://doi.org/10.1103/physrevlett.117.100401
[31] Anderson, B.P. and Kasevich, M.A. (1998) Macroscopic Quantum Interference from Atomic Tunnel Arrays. Science, 282, 1686-1689.
https://doi.org/10.1126/science.282.5394.1686
[32] Bloch, I., Dalibard, J. and Nascimbène, S. (2012) Quantum Simulations with Ultracold Quan- tum Gases. Nature Physics, 8, 267-276.
https://doi.org/10.1038/nphys2259
[33] Dunlap, D.H. and Kenkre, V.M. (1986) Dynamic Localization of a Charged Particle Moving under the Influence of an Electric Field. Physical Review B, 34, 3625-3633.
https://doi.org/10.1103/physrevb.34.3625
[34] Bludov, Y.V., Konotop, V.V. and Salerno, M. (2009) Dynamical Localization of Gap-Solitons by Time Periodic Forces. EPL (Europhysics Letters), 87, Article 20004.
https://doi.org/10.1209/0295-5075/87/20004
[35] Alfimov, G.L., Kevrekidis, P.G., Konotop, V.V. and Salerno, M. (2002) Wannier Functions Analysis of the Nonlinear Schrödinger Equation with a Periodic Potential. Physical Review E, 66, Article 046608.
https://doi.org/10.1103/physreve.66.046608
[36] Satsuma, J. and Yajima, N. (1974) B. Initial Value Problems of One-Dimensional Self- Modulation of Nonlinear Waves in Dispersive Media. Progress of Theoretical Physics Sup- plement, 55, 284-306.
https://doi.org/10.1143/ptps.55.284
[37] Xiao, D., Chang, M. and Niu, Q. (2010) Berry Phase Effects on Electronic Properties. Reviews of Modern Physics, 82, 1959-2007.
https://doi.org/10.1103/revmodphys.82.1959
[38] Fukui, T., Hatsugai, Y. and Suzuki, H. (2005) Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances. Journal of the Physical Society of Japan, 74, 1674-1677.
https://doi.org/10.1143/jpsj.74.1674
[39] Niedermeier, M., Nairn, M., Flindt, C. and Lado, J.L. (2024) Quantum Computing Topological Invariants of Two-Dimensional Quantum Matter. Physical Review Research, 6, Article 043288.
https://doi.org/10.1103/physrevresearch.6.043288