异步更新下概率布尔控制网络的镇定性准则
Stabilization Criteria of Probabilistic Boolean Control Networks under Asynchronous Updating
DOI: 10.12677/AAM.2025.145289, PDF,   
作者: 陈 磊:浙江师范大学数学科学学院,浙江 金华
关键词: 异步更新概率布尔控制网络镇定性Asynchronous Updating Probabilistic Boolean Control Networks Stabilization
摘要: 本文主要研究的是异步更新下概率布尔控制网络的镇定性问题,给出了异步更新下概率布尔控制 网络与传统的概率布尔控制网络的等价性,并给出了系统有限时间反馈镇定的充要条件。
Abstract: This paper focuses on the stabilization problem of probabilistic Boolean control net- works under asynchronous updates. We establish the equivalence between probabilis-tic Boolean control networks under asynchronous updates and traditional probabilistic Boolean control networks, and provide necessary and sufficient conditions for finite- time feedback stabilization of the system.
文章引用:陈磊. 异步更新下概率布尔控制网络的镇定性准则[J]. 应用数学进展, 2025, 14(5): 637-644. https://doi.org/10.12677/AAM.2025.145289

参考文献

[1] Zhao, R., Wang, B., Han, L., Feng, J. and Wang, H. (2022) New Results on Model Recon- struction of Boolean Networks with Application to Gene Regulatory Networks. Mathematical Methods in the Applied Sciences, 46, 3741-3757.
https://doi.org/10.1002/mma.8719
[2] Kauffman, S.A. (1969) Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets. Journal of Theoretical Biology, 22, 437-467.
https://doi.org/10.1016/0022-5193(69)90015-0
[3] Kauffman, S. (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press.
[4] Huang, S. and Ingber, D.E. (2000) Shape-Dependent Control of Cell Growth, Differentiation, and Apoptosis: Switching between Attractors in Cell Regulatory Networks. Experimental Cell Research, 261, 91-103.
https://doi.org/10.1006/excr.2000.5044
[5] Cheng, D., Qi, H. and Li, Z. (2011) Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. Springer.
[6] Cheng, D., Qi, H., Li, Z. and Liu, J.B. (2011) Stability and Stabilization of Boolean Networks. International Journal of Robust and Nonlinear Control, 21, 134-156.
https://doi.org/10.1002/rnc.1581
[7] Li, F. (2014) Global Stability at a Limit Cycle of Switched Boolean Networks under Arbitrary Switching Signals. Neurocomputing, 133, 63-66.
https://doi.org/10.1016/j.neucom.2013.11.031
[8] Shmulevich, I., Dougherty, E.R., Kim, S. and Zhang, W. (2002) Probabilistic Boolean Net- works: A Rule-Based Uncertainty Model for Gene Regulatory Networks. Bioinformatics, 18, 261-274.
https://doi.org/10.1093/bioinformatics/18.2.261
[9] Zhong, J., Pan, Q., Xu, W., et al. (2023) Asymptotical Stabilization for Probabilistic Boolean Control Networks under Operators and Inputs Constraints. IEEE Transactions on Automatic Control, 68, 4313-4320.
https://doi.org/10.1109/TAC.2022.3203019
[10] Chen, Q. and Li, H. (2022) Robust Weak Detectability Analysis of Boolean Networks Subject to Function Perturbation. IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 5004-5008.
https://doi.org/10.1109/tcsii.2022.3195182