随机浮游生物扩散模型的灭绝和平稳分布
Extinction and Stationary Distribution of Stochastic PlanktonDispersal Models
摘要: 本文研究了随机浮游生物扩散模型的渐近行为。 首先,构造合理的李雅普诺夫函数,证明了随机 浮游生物扩散模型正解的存在唯一性。 其次,利用比较定理,证明随机浮游生物扩散模型的灭绝 和均方稳定。 最后,运用扩散理论,证明了随机浮游生物扩散模型存在唯一平稳分布。
Abstract: In this paper, the asymptotic behavior of the stochastic plankton dispersal model is studied. Firstly, a reasonable Lyapunov function is constructed to prove the unique- ness of the positive solution of the stochastic plankton diffusion model. Secondly, the comparison theorem is used to prove the extinction and mean square stability of the random plankton dispersal model. Finally, the diffusion theory is used to prove that there is a unique stationary distribution of the stochastic plankton dispersal model.
文章引用:巫东兰, 黄梓轩, 钟志业, 陆玉梅. 随机浮游生物扩散模型的灭绝和平稳分布[J]. 应用数学进展, 2025, 14(5): 670-688. https://doi.org/10.12677/AAM.2025.145292

参考文献

[1] Oaten, A. and Murdoch, W.W. (1975) Switching, Functional Response, and Stability in Predator-Prey Systems. The American Naturalist, 109, 299-318.
https://doi.org/10.1086/282999
[2] Gaucel, S. and Pontier, D. (2005) How Predator Food Preference Can Change the Destiny of Native Prey in Predator-Prey Systems. Biological Invasions, 7, 795-806.
https://doi.org/10.1007/s10530-005-5214-x
[3] Xiang, C., Huang, J., Ruan, S. and Xiao, D. (2020) Bifurcation Analysis in a Host-Generalist Parasitoid Model with Holling II Functional Response. Journal of Differential Equations, 268, 4618-4662.
https://doi.org/10.1016/j.jde.2019.10.036
[4] Schultz, M. and Kiorboe, T. (2009) Active Prey Selection in Two Pelagic Copepods Feeding on Potentially Toxic and Non-Toxic Dinoflagellates. Journal of Plankton Research, 31, 553-561.
https://doi.org/10.1093/plankt/fbp010
[5] Zheng, Y., Gong, X. and Gao, H. (2022) Selective Grazing of Zooplankton on Phytoplankton Defines Rapid Algal Succession and Blooms in Oceans. Ecological Modelling, 468, Article ID: 109947.
https://doi.org/10.1016/j.ecolmodel.2022.109947
[6] Sol´e, J., Garcia-Ladona, E. and Estrada, M. (2006) The Role of Selective Predation in Harmful Algal Blooms. Journal of Marine Systems, 62, 46-54.
[7] Hallegraeff, G.M. (1993) A Review of Harmful Algal Blooms and Their Apparent Global Increase. Phycologia, 32, 79-99.
https://doi.org/10.2216/i0031-8884-32-2-79.1
[8] Gobler, C.J. (2020) Climate Change and Harmful Algal Blooms: Insights and Perspective. Harmful Algae, 91, Article ID: 101731.
https://doi.org/10.1016/j.hal.2019.101731
[9] Chattopadhayay, J., Sarkar, R.R. and Mandal, S. (2002) Toxin-Producing Plankton May Act as a Biological Control for Planktonic Blooms—Field Study and Mathematical Modelling. Journal of Theoretical Biology, 215, 333-344.
https://doi.org/10.1006/jtbi.2001.2510
[10] Roy, S., Alam, S. and Chattopadhyay, J. (2006) Competing Effects of Toxin-Producing Phy- toplankton on Overall Plankton Populations in the Bay of Bengal. Bulletin of Mathematical Biology, 68, 2303-2320.
https://doi.org/10.1007/s11538-006-9109-5
[11] Chakraborty, S., Bhattacharya, S., Feudel, U. and Chattopadhyay, J. (2012) The Role of Avoidance by Zooplankton for Survival and Dominance of Toxic Phytoplankton. Ecological Complexity, 11, 144-153.
https://doi.org/10.1016/j.ecocom.2012.05.006
[12] Chow, P. (2014) Stochastic Partial Differential Equations. 2nd Edition, CRC Press.
[13] May, R. (2001) Stability and Complexity in Model Ecosystems. Princeton University Press.
[14] Ikeda, N. and Wantanabe, S. (1981) Stochastic Differential Equations and Diffusion Processes. North-Holland.