[1]
|
Cai, T.T. and Guo, Z. (2020) Semisupervised Inference for Explained Variance in High Dimen-
sional Linear Regression and Its Applications. Journal of the Royal Statistical Society Series
B: Statistical Methodology, 82, 391-419. https://doi.org/10.1111/rssb.12357
|
[2]
|
Yang, Z., Balasubramanian, K. and Liu, H. (2017) High-Dimensional Non-Gaussian Single In-
dex Models via Thresholded Score Function Estimation. International Conference on Machine
Learning, 70, 3851-3860.
|
[3]
|
Alquier, P. and Biau, G. (2013) Sparse Single-Index Model. Journal of Machine Learning
Research, 14, 243-280.
|
[4]
|
Bickel, P.J., Ritov, Y. and Tsybakov, A.B. (2009) Simultaneous Analysis of Lasso and Dantzig
Selector. The Annals of Statistics, 37, 1705-1732. https://doi.org/10.1214/08-aos620
|
[5]
|
Ichimura, H. (1993) Semiparametric Least Squares (SLS) and Weighted SLS Estimation of
Single-Index Models. Journal of Econometrics, 58, 71-120.
https://doi.org/10.1016/0304-4076(93)90114-k
|
[6]
|
Deng, S., Ning, Y., Zhao, J., et al. (2024) Optimal and Safe Estimation for High-Dimensional
Semi-Supervised Learning. Journal of the American Statistical Association, 119, 2748-2759.
https://doi.org/10.1080/01621459.2023.2277409
|
[7]
|
Bellec, P.C., Dalalyan, A.S., Grappin, E. and Paris, Q. (2018) On the Prediction Loss of the
Lasso in the Partially Labeled Setting. Electronic Journal of Statistics, 12, 3443-3472.
https://doi.org/10.1214/18-ejs1457
|
[8]
|
Chakrabortty, A. and Cai, T. (2018) Efficient and Adaptive Linear Regression in Semi-
Supervised Settings. The Annals of Statistics, 46, 1541-1572.
https://doi.org/10.1214/17-aos1594
|
[9]
|
Chen, K. and Zhang, Y. (2023) Enhancing Efficiency and Robustness in High-Dimensional
Linear Regression with Additional Unlabeled Data.
https://doi.org/10.48550/arXiv.2311.17685
|
[10]
|
Yang, Z., Wang, Z., Liu, H., et al. (2015) Sparse Nonlinear Regression: Parameter Estimation
and Asymptotic Inference. https://doi.org/10.48550/arXiv.1511.04514
|
[11]
|
Fan, J., Yang, Z. and Yu, M. (2022) Understanding Implicit Regularization in Over-
Parameterized Single Index Model. Journal of the American Statistical Association, 118, 2315-
2328.
|
[12]
|
Eftekhari, H., Banerjee, M. and Ritov, Y. (2021) Inference in High-Dimensional Single-Index
Models under Symmetric Designs. Journal of Machine Learning Research, 22, 1-63.
|
[13]
|
Neykov, M., Liu, J.S. and Cai, T. (2016) L1-Regularized Least Squares for Support Recovery
of High Dimensional Single Index Models with Gaussian Designs. Journal of Machine Learning
Research, 17, 1-37.
|
[14]
|
Luo, S. and Ghosal, S. (2016) Forward Selection and Estimation in High Dimensional Single
Index Models. Statistical Methodology, 33, 172-179.
https://doi.org/10.1016/j.stamet.2016.09.002
|
[15]
|
Zhang, Y., Lian, H. and Yu, Y. (2020) Ultra-High Dimensional Single-Index Quantile Regres-
sion. Journal of Machine Learning Research, 21, 1-25.
|
[16]
|
Dong, C. and Tu, Y. (2024) Semiparametric Estimation and Variable Selection for Sparse
Single Index Models in Increasing Dimension. Econometric Theory, 41, 617-659.
https://doi.org/10.1017/s0266466624000021
|
[17]
|
Alquier, P. and Hebiri, M. (2012) Transductive Versions of the LASSO and the Dantzig Selec-
tor. Journal of Statistical Planning and Inference, 142, 2485-2500.
https://doi.org/10.1016/j.jspi.2012.03.020
|
[18]
|
Azriel, D., Brown, L.D., Sklar, M., Berk, R., Buja, A. and Zhao, L. (2021) Semi-Supervised
Linear Regression. Journal of the American Statistical Association, 117, 2238-2251.
https://doi.org/10.1080/01621459.2021.1915320
|
[19]
|
Foster, J.C., Taylor, J.M.G. and Nan, B. (2013)Variable Selection in Monotone Single-index Models via the Adaptive Lasso. Statistics in Medicine, 32, 3944-3954.
https://doi.org/10.1002/sim.5834
|
[20]
|
Rossell, D. and Zwiernik, P. (2021) Dependence in Elliptical Partial Correlation Graphs. Elec-
tronic Journal of Statistics, 15, 4236-4263. https://doi.org/10.1214/21-ejs1891
|
[21]
|
Wegkamp, M. and Zhao, Y. (2016) Adaptive Estimation of the Copula Correlation Matrix for
Semiparametric Elliptical Copulas. Bernoulli, 22, 1184-1226.
https://doi.org/10.3150/14-bej690
|
[22]
|
Tony Cai, T., Liu, W. and Xia, Y. (2013) Two-Sample Test of High Dimensional Means under
Dependence. Journal of the Royal Statistical Society Series B: Statistical Methodology, 76,
349-372. https://doi.org/10.1111/rssb.12034
|
[23]
|
Liu, W. and Luo, X. (2015) Fast and Adaptive Sparse Precision Matrix Estimation in High
Dimensions. Journal of Multivariate Analysis, 135, 153-162.
https://doi.org/10.1016/j.jmva.2014.11.005
|
[24]
|
Zhao, P., Yang, Y. and He, Q. (2022) High-Dimensional Linear Regression via Implicit Regu-
larization. Biometrika, 109, 1033-1046. https://doi.org/10.1093/biomet/asac010
|
[25]
|
Li, K. and Duan, N. (1989) Regression Analysis under Link Violation. The Annals of Statistics,
17, 1009-1052. https://doi.org/10.1214/aos/1176347254
|
[26]
|
Zhao, T. and Liu, H. (2014) Calibrated Precision Matrix Estimation for High-Dimensional
Elliptical Distributions. IEEE Transactions on Information Theory, 60, 7874-7887.
https://doi.org/10.1109/tit.2014.2360980
|