一类p-拉普拉斯方程解的存在性和集中紧性
Existence and Concentration of Solutions to a Class of p-Laplace Equations
摘要: 文章研究了如下形式的 p-Laplace 方程:
-Δ
pu+λV(x)|u|
P-2
u=f(x,u),x∈ℝ
N,
u∈W
1,p(ℝ
N),
其中参数λ>0, V∈C(R
N, R
+)且V
-1(0)内部非空。在一些较弱的假设条件下,本文讨论了该方程非平凡解的存在性以及当λ→∞时该方程解的集中紧性,所得结果推广了相关文献的研究成果。
Abstract: This article concerns the p-Laplace equations:
-Δpu+λV(x)|u|P-2
u=f(x,u),x∈ℝN,
u∈W1,p(ℝN),
where λ>0 is a parameter, V∈C(RN, R+)and V -1(0) has nonempty interior. Under some mild assumptions, the existence of nontrivial solutions of the equation is obtained by using the variational method. Moreover, the concentration of solutions is also explored.
参考文献
[1]
|
蓝永艺, 沈贤端. 一类p-Laplacian方程非平凡解的存在性[J]. 集美大学学报: 自然科学版, 2017, 22(6): 66-69.
|
[2]
|
张鹏. 一类次线性p-Laplacian椭圆方程的多重正解[J]. 高等数学研究, 2010, 13(1): 15-17.
|
[3]
|
陆文端. 微分方程中的变分方法[M]. 北京: 科学出版社, 2003.
|
[4]
|
Zou, W.M. and Schechter, M. (2006) Critical Point Theory and Its Applications. Springer.
|
[5]
|
Rabinowitz, P.H. (1986) Minimax Methods in Critical Point Theory with Applications to
Differential Equations. American Mathematical Society.
|
[6]
|
Lions, P.L. (1984) The Concentration-Compactness Principle in the Calculus of Variations. the
Locally Compact Case, Part 1. Annales de l’Institut Henri Poincare C, Analyse Non Lineaire,
1, 109-145. https://doi.org/10.1016/s0294-1449(16)30428-0
|