|
[1]
|
[1] 郭炳琨, 李新海, 杨松青. 化学电源[M]. 长沙: 中南工业大学出版社, 2000.
|
|
[2]
|
J. M. Tarascon, M. Armand. Issues and challenges facing re- chargeable lithium batteries. Nature, 2001, 414(6861): 359-367.
|
|
[3]
|
T. D. Gregory, R. J. Hoffman and R. C. Winterton. Nonaqueous electrochemistry of magnesium applications to energy storage. Journal of the Electrochemical Society, 1990, 137(3): 775-780.
|
|
[4]
|
D. Aurbach, Z. Lu, A. Schechter, et al. Prototype systems for re- chargeable magnesium batteries. Nature, 2000, 407(6805): 724- 727.
|
|
[5]
|
N. Amir, Y. Vestfrid, O. Chusid, et al. Progress in nonaqueous magnesium electrochemistry. Journal of Power Sources, 2007, 174(2): 1234-1240.
|
|
[6]
|
L. P. Lossiusb, F. Emmenegger. Plating of magnesium from or- ganic solvents. Electrochimica Acta, 1996, 41(3): 445-447.
|
|
[7]
|
Z. Lu, A. Schechter, M. Moshkovich, et al. On the electro- chemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. Journal of Electroanalytical Chemistry, 1999, 466(2): 203-217.
|
|
[8]
|
J. D. Genders, D. Pletcher. Studies using microelectrodes of the Mg(II)/Mg couple in tetrahydrofuran and propylene carbonate. Journal of Electroanalytical Chemistry, 1986, 199(1): 93-100.
|
|
[9]
|
C. Liebenow. Reversibility of electrochemical magnesium depo- sition from Grignard solutions. Journal of Applied Electro- chemistry, 1997, 27(2): 221-225.
|
|
[10]
|
D. Aurbach, Y. Cohen and M. Moshkovich. The study of rever- sible magnesium deposition by in situ scanning tunneling micro- scopy. Electrochemical and Solid-State Letters, 2001, 4(8): A113.
|
|
[11]
|
D. Aurbach, A. Schechter, M. Moshkovich, et al. On the mechan- isms of reversible magnesium deposition processes. Journal of the Electrochemical Society, 2001, 148(9): A1004-A1014.
|
|
[12]
|
D. Aurbach, T R. urgeman, O. Chusid, et al. Spectroelectro- chemical studies of magnesium deposition by in situ FTIR spec- troscopy. Electrochemistry Communications, 2001, 3(5): 252- 261.
|
|
[13]
|
Y. S. Guo, J. Yang, Y. N. NuLi, et al. Study of electronic effect of Grignard reagents on their electrochemical behavior. Electro- chemistry Communications, 2010, 12(12): 1671-1673.
|
|
[14]
|
D. Seyferth. The Grignard reagents. Organometallics, 2009, 28(6): 1598-1605.
|
|
[15]
|
E. Lancry, E. Levi, A. Mitelman, et al. Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases. Journal of Solid State Chemistry, 2006, 179(6): 1879-1882.
|
|
[16]
|
E. Lancry, E. Levi, Y. Gofer, et al. Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg bat- teries. Chemistry of Materials, 2004, 16(14): 2832-2838.
|
|
[17]
|
G. Milazzo, S. Caroli, V. Sharma, et al. 标准电极电位数据手册[M]. 北京: 科学出版社, 1991.
|
|
[18]
|
G. S. Silverman, P. E. Takita. Handbook of grignard reagents. New York: Marcel Dekker, 1996.
|
|
[19]
|
W. V. Evans, R. Pearson. The ionic nature of the grignard rea- gent. Journal of the American Chemical Society, 1942, 64(12): 2865-2871.
|
|
[20]
|
O. Chusid, Y. Gofer, H. Gizbar, et al. Solid-state rechargeable mag- nesium batteries. Advanced Materials, 2003, 15(7-8): 627-630.
|