| [1] | A. Scott. Integrability, encyclopedia of nonlinear science. Taylor & Francis, 2005. | 
                     
                                
                                    
                                        | [2] | 2G. Li, O. Martio. Local and global integrability of gradients in obstacle problems. Annales Academiae Scientiarum Fennicae Series A: Mathematica, 1994, 19(1): 25-34. | 
                     
                                
                                    
                                        | [3] | 3E. N. Barron, R. Jensen. Minimizing the   norm of the gradient with an energy constraint. Communications in Partial Differential Equations, 2005, 30(12): 1741-1772. | 
                     
                                
                                    
                                        | [4] | J. W. Cahn, C. A. Handwerker and J. E. Taylor. Geometric models of crystal growth. Acta Metallurgica, 1992, 40(7): 1443-1474. | 
                     
                                
                                    
                                        | [5] | J. Heinonen, T. Kilpelainen and O. Martio. Nonlinear potential theory of degenerate elliptic equations. New York: Clarendon Press, 1993. | 
                     
                                
                                    
                                        | [6] | M. Kubo, N. Yamazaki. Periodic solutions of elliptic-parabolic variational inequalities with time-dependent constraints. Journal of Evolution Equations, 2006, 6(1): 71-93. | 
                     
                                
                                    
                                        | [7] | G. Li, O. Martio. Stability of solutions of varying degenerate elliptic equations. Indiana Mathematics Journal, 1998, 47(3): 873-891. | 
                     
                                
                                    
                                        | [8] | M. Giaquinta, G. Modica. Regularity results for some classes of higher order nonlinear elliptic systems. Journal für die Reine und Angewandte Mathematik, 1979, 311-312: 145-169. | 
                     
                                
                                    
                                        | [9] | T. Iwaniec. The Gehring lemma. In: P. L. Duren, et al., Eds., Quasiconformal mappings and analysis: A collection of papers honoring Frederick W. Gehring on his 70th birthday. Ann Arbor: Proceedings of the International Symposium, August 1995, Berlin: Springer-Verlag, 1998: 181-204. | 
                     
                                
                                    
                                        | [10] | G. Li, O. Martio. Stability and higher integrability of derivatives of solutions in double obstacle problems. Journal of Mathematical Analysis and Applications, 2002, 272(1): 19-29. |