学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 15 No. 6 (June 2025)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
多项式环上的n-Gorenstein投射模
n-Gorenstein Projective Modules over Polynomial Rings
DOI:
10.12677/PM.2025.156186
,
PDF
,
,
,
被引量
作者:
李夏妍
:西北师范大学数学与统计学院,甘肃 兰州
关键词:
n-Gorenstein投射模
;
n-Gorenstein内射模
;
多项式环
;
n-Gorenstein Projective Module
;
n-Gorenstein Injective Module
;
Polynomial Ring
摘要:
设n是一个正整数,R是环,本文讨论了多项式环上的n$-Gorenstein投射模和n-Gorenstein内射模的结构。证明了若(Y,f)是n-Gorenstein~投射左R[x]-模,则f是单同态,coker f是(n-1)-Gorenstein~投射左R-模;对偶地,(Y,f)是n-Gorenstein内射左R[x]-模,则f是满同态,Ker f是(n-1)-Gorenstein~内射左R-模。
Abstract:
Let n be a positive integer and R be a ring. In this paper,n-Gorenstein projective modules and n-Gorenstein injective modules over polynomial rings were introduced.It is proved that if (Y,f) is an n-Gorenstein projective left R[x]-module, then f is a monomorphism and coker f is (n-1)-Gorenstein projective left R-module. Dually, if (Y,f) is an n-Gorenstein injective left R[x]-module, then f is an epimorphism and Ker f is (n-1)-Gorenstein injective left R-module.
文章引用:
李夏妍. 多项式环上的n-Gorenstein投射模[J]. 理论数学, 2025, 15(6): 29-35.
https://doi.org/10.12677/PM.2025.156186
参考文献
[1]
Auslander, M. and Bridger, M. (1969) Stable Module Theory. In: Memoirs of the American Mathematical Society, AMS.
https://doi.org/10.1090/memo/0094
[2]
Enochs, E.E. and Jenda, O.M.G. (1995) Gorenstein Injective and Projective Modules. Mathe- matische Zeitschrift, 220, 611-633.
https://doi.org/10.1007/bf02572634
[3]
Tang, X. (2015) Applications of N-Gorenstein Projective and Injective Modules. Hacettepe Journal of Mathematics and Statistics, 44, 1435-1443.
https://doi.org/10.15672/hjms.2015449673
[4]
Quillen, D. (1976) Projective Modules over Polynomial Rings. Inventiones Mathematicae, 36, 167-171.
https://doi.org/10.1007/bf01390008
[5]
Izelgue, L., Mimouni, A.A. and Tamoussit, A. (2019) On the Module Structure of the Integer- Valued Polynomial Rings. Bulletin of the Malaysian Mathematical Sciences Society, 43, 2687- 2699.
https://doi.org/10.1007/s40840-019-00826-5
[6]
Mao, L. (2024) A Structure Result on Modules over Polynomial Rings. Journal of Algebra and Its Applications, 24, Article 2550230.
https://doi.org/10.1142/s0219498825502305
[7]
Mao, L. (2024) Gorenstein Projective, Injective, Flat Modules and Dimensions over Polynomial Rings. Journal of Algebra and Its Applications.
https://doi.org/10.1142/s0219498826500568
[8]
Enochs, E.E., Cortes-Izurdiaga, M. and Torrecillas, B. (2014) Gorenstein Conditions over Triangular Matrix Rings. Journal of Pure and Applied Algebra, 218, 1544-1554.
https://doi.org/10.1016/j.jpaa.2013.12.006
[9]
Holm, H. (2004) Gorenstein Homological Dimensions. Journal of Pure and Applied Algebra, 189, 167-193.
https://doi.org/10.1016/j.jpaa.2003.11.007
投稿
为你推荐
友情链接
科研出版社
开放图书馆