多项式环上的n-Gorenstein投射模
n-Gorenstein Projective Modules over Polynomial Rings
DOI: 10.12677/PM.2025.156186, PDF,   
作者: 李夏妍:西北师范大学数学与统计学院,甘肃 兰州
关键词: n-Gorenstein投射模n-Gorenstein内射模多项式环n-Gorenstein Projective Module n-Gorenstein Injective Module Polynomial Ring
摘要: 设n是一个正整数,R是环,本文讨论了多项式环上的n$-Gorenstein投射模和n-Gorenstein内射模的结构。证明了若(Y,f)是n-Gorenstein~投射左R[x]-模,则f是单同态,coker f是(n-1)-Gorenstein~投射左R-模;对偶地,(Y,f)是n-Gorenstein内射左R[x]-模,则f是满同态,Ker f是(n-1)-Gorenstein~内射左R-模。
Abstract: Let n be a positive integer and R be a ring. In this paper,n-Gorenstein projective modules and n-Gorenstein injective modules over polynomial rings were introduced.It is proved that if (Y,f) is an n-Gorenstein projective left R[x]-module, then f is a monomorphism and coker f is (n-1)-Gorenstein projective left R-module. Dually, if (Y,f) is an n-Gorenstein injective left R[x]-module, then f is an epimorphism and Ker f is (n-1)-Gorenstein injective left R-module.
文章引用:李夏妍. 多项式环上的n-Gorenstein投射模[J]. 理论数学, 2025, 15(6): 29-35. https://doi.org/10.12677/PM.2025.156186

参考文献

[1] Auslander, M. and Bridger, M. (1969) Stable Module Theory. In: Memoirs of the American Mathematical Society, AMS.
https://doi.org/10.1090/memo/0094
[2] Enochs, E.E. and Jenda, O.M.G. (1995) Gorenstein Injective and Projective Modules. Mathe- matische Zeitschrift, 220, 611-633.
https://doi.org/10.1007/bf02572634
[3] Tang, X. (2015) Applications of N-Gorenstein Projective and Injective Modules. Hacettepe Journal of Mathematics and Statistics, 44, 1435-1443.
https://doi.org/10.15672/hjms.2015449673
[4] Quillen, D. (1976) Projective Modules over Polynomial Rings. Inventiones Mathematicae, 36, 167-171.
https://doi.org/10.1007/bf01390008
[5] Izelgue, L., Mimouni, A.A. and Tamoussit, A. (2019) On the Module Structure of the Integer- Valued Polynomial Rings. Bulletin of the Malaysian Mathematical Sciences Society, 43, 2687- 2699.
https://doi.org/10.1007/s40840-019-00826-5
[6] Mao, L. (2024) A Structure Result on Modules over Polynomial Rings. Journal of Algebra and Its Applications, 24, Article 2550230.
https://doi.org/10.1142/s0219498825502305
[7] Mao, L. (2024) Gorenstein Projective, Injective, Flat Modules and Dimensions over Polynomial Rings. Journal of Algebra and Its Applications.
https://doi.org/10.1142/s0219498826500568
[8] Enochs, E.E., Cortes-Izurdiaga, M. and Torrecillas, B. (2014) Gorenstein Conditions over Triangular Matrix Rings. Journal of Pure and Applied Algebra, 218, 1544-1554.
https://doi.org/10.1016/j.jpaa.2013.12.006
[9] Holm, H. (2004) Gorenstein Homological Dimensions. Journal of Pure and Applied Algebra, 189, 167-193.
https://doi.org/10.1016/j.jpaa.2003.11.007