[1]
|
Kummer, E.E. (1836) Über die hypergeometrische Reihe. Journal für die reine und angewandte
Mathematik, 1836, 39-83.
|
[2]
|
Kraus, W. (1932) Über den Zusammenhang einiger Charakteristiken eines Einfach zusammenhenden
Bereiches mit der Kreisabbildung. Mitteilungen des Mathematischen Seminars der
Universitiessen, 21, 1-28.
|
[3]
|
Nehari, Z. (1949) The Schwarzian Derivative and Schlicht Functions. Bulletin of the American
Mathematical Society, 55, 545-551. https://doi.org/10.1090/s0002-9904-1949-09241-8
|
[4]
|
Becker, J. (1972) Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte
Funktionen. Journal für die reine und angewandte Mathematik, 255, 23-43.
|
[5]
|
Becker, J. and Pommerenke, C. (1984) Schlichtheitskriterien und Jordangebiete. Journal für
die reine und angewandte Mathematik, 1984, 74-94.
|
[6]
|
Yamashita, S. (1976) Almost Locally Univalent Functions. Monatshefte für Mathematik, 81,
235-240. https://doi.org/10.1007/bf01303197
|
[7]
|
Kim, Y.C. and Sugawa, T. (2002) Growth and Coefficient Estimates for Uniformly Locally
Univalent Functions on the Unit Disk. Rocky Mountain Journal of Mathematics, 32, 179-200.
https://doi.org/10.1216/rmjm/1030539616
|
[8]
|
Robertson, M.I.S. (1936) On the Theory of Univalent Functions. The Annals of Mathematics,
37, 374-408. https://doi.org/10.2307/1968451
|
[9]
|
Brannan, D.A. and Kirwan, W.E. (1969) On Some Classes of Bounded Univalent Functions.
Journal of the London Mathematical Society, 2, 431-443.
https://doi.org/10.1112/jlms/s2-1.1.431
|
[10]
|
Sokół, J. and Stankiewicz, J. (1996) Radius of Convexity of Some Subclasses of Strongly
Starlike Functions. Zeszytów Naukowych Politechniki Rzeszowskiej—Matematyka, 19, 101-105.
|
[11]
|
Sokol, J. (2009) Coefficient Estimates in a Class of Strongly Starlike Functions. Kyungpook
Mathematical Journal, 49, 349-353. https://doi.org/10.5666/kmj.2009.49.2.349
|
[12]
|
Sugawa, T. (1997) On the Norm of Pre-Schwarzian Derivatives of Strongly Starlike Functions.
Research Institute for Mathematical Sciences, 1012, 178-185.
|
[13]
|
Yamashita, S. (1999) Norm Estimates for Function Starlike or Convex of Order α. Hokkaido
Mathematical Journal, 28, 217-230. https://doi.org/10.14492/hokmj/1351001086
|
[14]
|
Ponnusamy, S. and Sahoo, S.K. (2010) Pre-Schwarzian Norm Estimates of Functions for a
Subclass of Strongly Starlike Functions. Mathematica, 52, 47-53.
|
[15]
|
Aghalary, R. and Orouji, Z. (2013) Norm Estimates of the Pre-Schwarzian Derivatives for α-
Spiral-Like Functions of Order ρ. Complex Analysis and Operator Theory, 8, 791-801.
https://doi.org/10.1007/s11785-013-0288-4
|
[16]
|
Ali, M.F. and Pal, S. (2024) The Schwarzian Norm Estimates for Janowski Convex Functions.
Proceedings of the Edinburgh Mathematical Society, 67, 299-315.
https://doi.org/10.1017/s0013091524000014
|
[17]
|
Ponnusamy, S. and Sugawa, T. (2008) Norm Estimates and Univalence Criteria for Meromorphic
Functions. Journal of the Korean Mathematical Society, 45, 1661-1676.
https://doi.org/10.4134/jkms.2008.45.6.1661
|
[18]
|
Ponnusamy, S. and Sahoo, S.K. (2010) Pre-Schwarzian Norm Estimates of Functions for a
Subclass of Strongly Starlike Functions. Mathematica, 52, 47-53.
|
[19]
|
Kanas, S. (2009) Norm of Pre-Schwarzian Derivative for the Class of K-Uniformly Convex and
K-Starlike Functions. Applied Mathematics and Computation, 215, 2275-2282.
https://doi.org/10.1016/j.amc.2009.08.021
|
[20]
|
Rahmatan, H., Najafzadeh, S. and Ebadian, A. (2017) The Norm of Pre-Schwarzian Derivatives
on Bi-Univalent Functions of Order α. Bulletin of the Iranian Mathematical Society, 43, 1037-
1043.
|
[21]
|
Carrasco, P. and Hernández, R. (2023) Schwarzian Derivative for Convex Mappings of Order
α. Analysis and Mathematical Physics, 13, Article No. 22.
https://doi.org/10.1007/s13324-023-00785-y
|
[22]
|
Dieudonné, J. (1931) Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions
bornées d’une variable complexe. Annales scientifiques de l’École normale supérieure, 48,
247-358. https://doi.org/10.24033/asens.812
|
[23]
|
Chuaqui, M., Duren, P. and Osgood, B. (2003) The Schwarzian Derivative for Harmonic
Mappings. Journal d’Analyse Mathématique, 91, 329-351. https://doi.org/10.1007/bf02788793
|
[24]
|
Hernández, R. and Martín, M.J. (2013) Pre-Schwarzian and Schwarzian Derivatives of Harmonic
Mappings. The Journal of Geometric Analysis, 25, 64-91.
https://doi.org/10.1007/s12220-013-9413-x
|