关于SL*类函数的前施瓦茨范数的研究
On the Properties of the Pre-Schwarz Norm of Functions in the Class SL*
DOI: 10.12677/PM.2025.156187, PDF,   
作者: 张嘉浩, 罗梅, 李铭:长沙理工大学数学与统计学院,湖南 长沙
关键词: 前施瓦茨范数施瓦茨函数从属单叶函数Pre-Schwarz Norm Schwarz Function Subordination Univalent Function
摘要: 前施瓦茨范数作为复分析研究中的重要工具,在研究复映射的几何性质、单叶性准则及Teich-mller空间理论等方面发挥关键作用。本文研究在单位圆盘上满足从属关系的标准化解析单叶函数类SL的前施瓦茨范数估计问题。本文首先系统梳理了相关研究进展,然后基于施瓦茨函数的性质及其相关推广形式,结合多元函数极值理论,得到了SL类函数前施瓦茨范数的上界估计。
Abstract: The pre-Schwarz norm, as an important tool in complex analysis, plays a crucial role in studying the geometric properties of complex mappings, criteria for univalence, and the theory of Teichmüller spaces. This paper investigates the estimation of the pre-Schwarz norm for the class of normalized analytic univalent functions SL that satisfy subordination relations on the unit disk. The paper first systematically reviews the related research progress, and then, based on the properties of Schwarz functions and their related generalizations, and combining multivariable extremal function theory, derives an upper bound estimate for the pre-Schwarz norm of functions in the class SL.
文章引用:张嘉浩, 罗梅, 李铭. 关于SL*类函数的前施瓦茨范数的研究[J]. 理论数学, 2025, 15(6): 36-48. https://doi.org/10.12677/PM.2025.156187

参考文献

[1] Kummer, E.E. (1836) Über die hypergeometrische Reihe. Journal für die reine und angewandte Mathematik, 1836, 39-83.
[2] Kraus, W. (1932) Über den Zusammenhang einiger Charakteristiken eines Einfach zusammenhenden Bereiches mit der Kreisabbildung. Mitteilungen des Mathematischen Seminars der Universitiessen, 21, 1-28.
[3] Nehari, Z. (1949) The Schwarzian Derivative and Schlicht Functions. Bulletin of the American Mathematical Society, 55, 545-551.
https://doi.org/10.1090/s0002-9904-1949-09241-8
[4] Becker, J. (1972) Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen. Journal für die reine und angewandte Mathematik, 255, 23-43.
[5] Becker, J. and Pommerenke, C. (1984) Schlichtheitskriterien und Jordangebiete. Journal für die reine und angewandte Mathematik, 1984, 74-94.
[6] Yamashita, S. (1976) Almost Locally Univalent Functions. Monatshefte für Mathematik, 81, 235-240.
https://doi.org/10.1007/bf01303197
[7] Kim, Y.C. and Sugawa, T. (2002) Growth and Coefficient Estimates for Uniformly Locally Univalent Functions on the Unit Disk. Rocky Mountain Journal of Mathematics, 32, 179-200.
https://doi.org/10.1216/rmjm/1030539616
[8] Robertson, M.I.S. (1936) On the Theory of Univalent Functions. The Annals of Mathematics, 37, 374-408.
https://doi.org/10.2307/1968451
[9] Brannan, D.A. and Kirwan, W.E. (1969) On Some Classes of Bounded Univalent Functions. Journal of the London Mathematical Society, 2, 431-443.
https://doi.org/10.1112/jlms/s2-1.1.431
[10] Sokół, J. and Stankiewicz, J. (1996) Radius of Convexity of Some Subclasses of Strongly Starlike Functions. Zeszytów Naukowych Politechniki Rzeszowskiej—Matematyka, 19, 101-105.
[11] Sokol, J. (2009) Coefficient Estimates in a Class of Strongly Starlike Functions. Kyungpook Mathematical Journal, 49, 349-353.
https://doi.org/10.5666/kmj.2009.49.2.349
[12] Sugawa, T. (1997) On the Norm of Pre-Schwarzian Derivatives of Strongly Starlike Functions. Research Institute for Mathematical Sciences, 1012, 178-185.
[13] Yamashita, S. (1999) Norm Estimates for Function Starlike or Convex of Order α. Hokkaido Mathematical Journal, 28, 217-230.
https://doi.org/10.14492/hokmj/1351001086
[14] Ponnusamy, S. and Sahoo, S.K. (2010) Pre-Schwarzian Norm Estimates of Functions for a Subclass of Strongly Starlike Functions. Mathematica, 52, 47-53.
[15] Aghalary, R. and Orouji, Z. (2013) Norm Estimates of the Pre-Schwarzian Derivatives for α- Spiral-Like Functions of Order ρ. Complex Analysis and Operator Theory, 8, 791-801.
https://doi.org/10.1007/s11785-013-0288-4
[16] Ali, M.F. and Pal, S. (2024) The Schwarzian Norm Estimates for Janowski Convex Functions. Proceedings of the Edinburgh Mathematical Society, 67, 299-315.
https://doi.org/10.1017/s0013091524000014
[17] Ponnusamy, S. and Sugawa, T. (2008) Norm Estimates and Univalence Criteria for Meromorphic Functions. Journal of the Korean Mathematical Society, 45, 1661-1676.
https://doi.org/10.4134/jkms.2008.45.6.1661
[18] Ponnusamy, S. and Sahoo, S.K. (2010) Pre-Schwarzian Norm Estimates of Functions for a Subclass of Strongly Starlike Functions. Mathematica, 52, 47-53.
[19] Kanas, S. (2009) Norm of Pre-Schwarzian Derivative for the Class of K-Uniformly Convex and K-Starlike Functions. Applied Mathematics and Computation, 215, 2275-2282.
https://doi.org/10.1016/j.amc.2009.08.021
[20] Rahmatan, H., Najafzadeh, S. and Ebadian, A. (2017) The Norm of Pre-Schwarzian Derivatives on Bi-Univalent Functions of Order α. Bulletin of the Iranian Mathematical Society, 43, 1037- 1043.
[21] Carrasco, P. and Hernández, R. (2023) Schwarzian Derivative for Convex Mappings of Order α. Analysis and Mathematical Physics, 13, Article No. 22.
https://doi.org/10.1007/s13324-023-00785-y
[22] Dieudonné, J. (1931) Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions bornées d’une variable complexe. Annales scientifiques de l’École normale supérieure, 48, 247-358.
https://doi.org/10.24033/asens.812
[23] Chuaqui, M., Duren, P. and Osgood, B. (2003) The Schwarzian Derivative for Harmonic Mappings. Journal d’Analyse Mathématique, 91, 329-351.
https://doi.org/10.1007/bf02788793
[24] Hernández, R. and Martín, M.J. (2013) Pre-Schwarzian and Schwarzian Derivatives of Harmonic Mappings. The Journal of Geometric Analysis, 25, 64-91.
https://doi.org/10.1007/s12220-013-9413-x