叶状黎曼流形上广义Bott联络的Bianchi恒等式
The Bianchi Identities of the GeneralizedBott Connection on Foliated RiemannianManifolds
摘要: 本文研究在叶状黎曼流形上的广义Bott联络的相关性质,并由广义Bott联络的结构方程推导出Bianchi恒等式。
Abstract: This paper studies the relevant properties of the generalized Bott connection on a foliated Riemannian manifold and derives the frst Bianchi identity from the structureequations of the generalized Bott connection.
文章引用:陈钰莹. 叶状黎曼流形上广义Bott联络的Bianchi恒等式[J]. 应用数学进展, 2025, 14(6): 335-348. https://doi.org/10.12677/AAM.2025.146324

参考文献

[1] Bott, R. (1972) Lectures on Characteristic Classes and Foliations. In: Lecture Notes in Math-ematics, Springer Berlin Heidelberg, 1-94.
https://doi.org/10.1007/bb0058509
[2] Baudoin, F. and Bonnefont, M.(2015)Curvature-Dimension Estimates for the Laplace-Beltrami Operator of a Totally Geodesic Foliation. Nonlinear Analysis, 126, 159-169.
https://doi.org/10.1016/j.na.2015.06.025
[3] Baudoin, F. (2016)Sub-Laplacians and Hypoelliptic Operators on Totally Geodesic Rieman-nian Foliations. In: EMS Series of Lectures in Mathematics, EMS Press, 259-321.
https://doi.org/10.4171/162-1/3
[4] Dong,Y.(2020)Eells-Sampson Type Theorems for Subelliptic Harmonic Maps from Sub-Riemannian Manifolds. The Journal of Geometric Analsis, 31, 3608-3655.
https://doi.org/10.1007/s12220-020-00408-z
[5] Bianchi, L.(1923)Lezioni di geometria differenziale, Volume 2.
[6] E. Spoerri.Einstein, A. (1950) The Bianchi Identities in the Generalized Theory of Gravitation. CanadianJournal of Mathematics, 2,120-128.
https://doi.org/10.4153/cjm-1950-011-4
[7] Hamilton, R.S. (1982) Three-manifolds with Positive Ricci Curvature. Journal of DiferentialGeometry,17,255-306.
https://doi.org/10.4310/jdg/1214436922
[8] Chow, B. and Knopf, D. (2004) The Ricci Flow: An Introduction, Volume 1. American Mathematical Society.
[9] Brendle, S. (2010) Ricci Flow and the Sphere Theorem. American Mathematical Society.
https://doi.org/10.1090/gsm/111
[10] Haefiger, A. and Salem, E. (1990) Riemannian Foliations on Simply Connected Manifolds andActions of Tori on Orbifolds. lllinois Journal of Mathematics, 34, 706-730.
https://doi.org/10.1215/ijm/1255988064
[11] Walschap, G.(1992) Metric Foliations and Curvature. Journal of Geometric Analysis, 2, 373381.
https://doi.org/10.1007/bf02934587
[12] Gromoll, D. and Walschap, G. (2009) Metric Foliations and Curvature, Volume 268 of Progressin Mathematics. Springer Science and Business Media.
[13] Kobayashi,S.and Nomizu,K. (1996) Foundations of Differential Geometry, Volume 2. JohnWiley and Sons.