(k1,k2)-Halin图的消圈数
The Decycling Number of (k1, k2)-HalinGraphs
DOI: 10.12677/AAM.2025.146328, PDF,   
作者: 寇文冠:中国人民大学信息学院,北京;魏二玲*:中国人民大学数学学院,北京
关键词: Halin图消数近k正则Halin Graph Decycling Number Near k-Regular
摘要: 对于n阶(k1,k2)-Halin图,k21≥5,文中给出了其消圈数的上界和下界,并且给出的界都是可达的。
Abstract: For (k1,k2)-Halin graph with n vertices, k2≥k1≥5, the decycling number of G is given in this paper and the bounds are achieved.
文章引用:寇文冠, 魏二玲. (k1,k2)-Halin图的消圈数[J]. 应用数学进展, 2025, 14(6): 391-397. https://doi.org/10.12677/AAM.2025.146328

参考文献

[1] Bondy, M.(1976) Graph Theory with Applications. Macmillan Press Ltd.
[2] Diestel, R. (1997) Graph Theory. Springer-Verlag.
[3] Kirchhoff, G. (1847)Ueber die Aufosung der Gleichumgen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Strome gefihrt wird. Annalen der Physik, 148497-508.
https://doi.org/10.1002/andp.18471481202
[4] Zhao, D., Xu, L., Qin, S., Liu, G.and Wang,2.(2020) The Feedback Vertex Set Problemof Multiplex Networks. IEEE Transactions on Circuits and Systems Il: Erpress Briefs, 673492-3496.
https://doi.org/10.1109/tcsii.2020.2997974
[5] Zhang,2., Ye, A., Zhou, X. and Shao,2. (2013)An Efcient Local Search for the FeedbackVertex Set Problem. Algorithms, 6, 726-746.
https://doi.org/10.3390/a6040726
[6] Blin, G., Sikora, F. and Vialette, S.(2010) Querying Graphs in Protein-Protein InteractionsNetworks Using Feedback Vertex Set. EEE/ACM Transactions on Computational Biology and Bioinformatics,7,628-635.
https://doi.org/10.1109/tcbb.2010.53
[7] Karp, R.M.(1972) Reducibility among Combinatorial Problems. In: Miller, R.E., ThatcherI.W. and Bohlinger, J.D., Eds., Complerity of Computer Computations, Springer US, 85-103
https://doi.org/10.1007/978-1-4684-2001-2_9
[8] Han, R. and Wei,E. (2016)Decycling Number and Graph Embedding. Advances in Mathe-matics,45.349-356.
[9] 杨超.图的消圈数及相关问题研究[D|:[博士学位论文.上海:华东师范大学,2017.
[10] 王永强,任韩.Halin图的消圈数及点染色问题[J.华东师范大学学报(自然科学版),2016(6):65-70.
[11] 庄翠花.几类图的消圈数问题[D|:[硕士学位论文.上海:华东师范大学,2014.