[1]
|
Pietsch, A.(1980)Operator Ideals. North-Holland Publishing, 1-365.
|
[2]
|
Pajor, A.(1998) Metric Entropy of the Grassmann Manifold. In: Conver Geometric Analysis.
Cambridge University Press, 181-188.
|
[3]
|
Rohde, A. and Tsvbakov,A.B.(2011)Estimation of High-Dimensional Low-Rank Matrices.The Annals of Statistics, 39,887-930. https://doi.org/10.1214/10-aos860
|
[4]
|
Hinrichs, A., Prochno, J. and Vybíral, J. (2017) Entropy Numbers of Embeddings of SchattenClasses. Journal of Functional Analysis, 273,3241-3261.
|
[5]
|
Dolezalová, A. and Vybíral, J. (2020)On the Volume of Unit Balls of Finite-DimensionalLorentz Spaces. Journal ofApprorimation Theory, 255, Article 105407. https://doi.org/10.1016/j.jat.2020.105407
|
[6]
|
Pisier, G. and Xu,Q.(2003)Non-Commutative Lp-Spaces. In: Handbook of the Geometry ofBanach Spaces, Elsevier, 1459-1517. https://doi.org/10.1016/s1874-5849(03)80041-4
|
[7]
|
Konig, H. (1986) Eigenvalue Distribution of Compact Operators, Volume 16 of Operator The-ory:Advances and Applications. Basel.
|
[8]
|
Kossaczka, M. and Vybiral, J.(2020)Entropy Numbers of Finite-Dimensional Embed-dings.Erpositiones Mathematicae, 38,319-336.
|
[9]
|
Edmunds, D.E. and Tiebel, H. (1996). Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press, 1-390. https://doi.org/10.1017/cbo9780511662201
|
[10]
|
Arazy, J. (1978) Some Remarks on Interpolation Theorems and the Boundness of the Triangu-lar Projection in Unitary Matrix Spaces.Integral Equations and Operator Theory, 1, 453-495.
|
[11]
|
Bergh, J. and Lofstrom, J. (2012)Interpolation Spaces: An Introduction. Springer, 1-207
|
[12]
|
Prochno, J., Sonnleitner, M. and Vybíral, J. (2025) Entropy Numbers of Finite-DimensionalLorentz Space Embeddings. Studia Mathematica, 255, Article 105407. https://doi.org/10.4064/sm240409-15-2
|
[13]
|
Schiitt, C.(1982)On the Volume of Unit Balls in Banach Spaces. Compositio Mathematica.47.393-407.
|
[14]
|
Hinrichs, A., Kolleck, A. and Vybíral, J.(2016) Carl's Inequality for Quasi-Banach Spaces.
Journal of Functional Analysis,271.2293-2307.
|