|
[1]
|
C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592): 607-609.
|
|
[2]
|
A. K. Boal, V. M. Rotello. Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds. Journal of the American Chemical Society, 2000, 122(4): 734-735.
|
|
[3]
|
F. R. Caruso, H. Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282(5391): 1111-1114.
|
|
[4]
|
R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney and R. G. Osifchin. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science, 1996, 273(5282): 1690-1693.
|
|
[5]
|
V. Patil, K. S. Mayya, S. D. Pradhan and M. Sastry. Evidence for novel interdigitated bilayer formation of fatty acids during three- dimensional self-assembly on silver colloidal particles. Journal of the American Chemical Society, 1997, 119: 9281-9282.
|
|
[6]
|
J. Bico, B. Roman, L. Moulin and A. Boudaoud. Adhesion: Ela- stocapillary coalescence in wet hair. Nature, 2004, 432(7018): 690-690.
|
|
[7]
|
公茂刚, 许小亮, 曹自立, 刘远越, 朱海明. 两步法制备超疏水性ZnO纳米棒薄膜[J]. 物理学报, 2009, 58: 1885-1889.
|
|
[8]
|
Z. L. Wang. ZnO nanowire and nanobelt platform for nanotech- nology. Materials Science and Engineering R, 2009, 64(1): 33- 71.
|
|
[9]
|
W. Lin, Y. H. Xiu, H. J. Jiang, R. W. Zhang, O. Hildreth, K. S. Moon and C. P. Wong. Self-assembled monolayer-assisted che- mical transfer of in situ functionalized carbon nanotubes. Journal of the American Chemical Society, 2008, 130(30): 9636-9637.
|
|
[10]
|
X. Y. Kong, Z. L. Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters, 2003, 3(12): 1625-1631.
|
|
[11]
|
N. B. Bowden, M. Weck, I. S. Choi and G. M. Whitesides. Mole- cule-mimetic chemistry and mesoscale self-assembly. Accounts of Chemical Research, 2001, 34(3): 231-238.
|
|
[12]
|
V. Schmidt, J. V. Wittemann and U. Gosele. Growth, thermodynamics, and electrical properties of silicon nanowires. Chemical Reviews, 2010, 110(1): 361-388.
|
|
[13]
|
R. S. Wagner, W. C. Ellis. Vapor-liquid-solid mechanism of sin- gle crystal growth. Applied Physics Letters, 1964, 4(5): 89-90.
|
|
[14]
|
R. S. Wagner, W. C. Ellis. Institute of metals division: The vapor- liquid-solid mechanism of crystal growth and its application to silicon. Transactions of Metals Society AIME, 1965, 233: 1053- 1064.
|
|
[15]
|
Y. W. Wang, V. Schmidt, S. Senz and U. Gosele. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotechnology, 2006, 1(3): 186-189.
|
|
[16]
|
J. Kikkawa, Y. Ohno and S. Takeda. Growth rate of silicon nanowires. Applied Physics Letters, 2005, 86: 1-3.
|
|
[17]
|
S. G. Ihn, J. I. Song. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Letters, 2007, 7(1): 39-44.
|
|
[18]
|
Y. F. Wang, K. K. Lew, T. T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing and T. S. Mayer. Use of phosphineas an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Letters, 2005, 5(11): 2139-2143.
|
|
[19]
|
X. S. Fang, C. H. Ye, L. D. Zhang, Y. H. Wang and Y. C. Wu. Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Advanced Functional Materials, 2005, 15(1): 63-68.
|
|
[20]
|
Z. W. Pan, Z. R. Dai and Z. L. Wang. Nanobelts of semi-con- ducting oxides. Science, 2001, 291(5510): 1347-1949.
|
|
[21]
|
X. Y. Kong, Y. Ding, R. S. Yang and Z. L. Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662): 1348-1351.
|
|
[22]
|
G. S. Wang, Y. Deng and L. Guo. Single-crystalline ZnO nano- wire bundles: Synthesis, mechanism and their application in di- electric composites. Chemistry: A European Journal, 2010, 16 (33): 10220-10225.
|
|
[23]
|
L. Q. Mai, Y. H. Gu, C. H. Han, B. Hu, W. Chen, P. C. Zhang, L. Xu, W. L. Guo and Y. Dai. Orientated Langmuir-Blodgett as- sembly of VO2 nanowires. Nano Letters, 2009, 9(2): 826-830.
|
|
[24]
|
M. H. Cao, C. W. Hu, Q. Y. Wu, C. X. Guo, Y. J. Qi and E. B. Wang. Controlled synthesis of LaPO4 and CePO4 nanorods/nano- wires. Nanotechnology, 2005, 16(2): 282-286.
|
|
[25]
|
M. H. Cao, C. W. Hu and E. B. Wang. The first fluoride one- dimensional nanostructures: Microemulsion-mediated hydrother- mal synthesis of BaF2 whiskers. Journal of the American Che- mical Society, 2003, 125(37): 11196-11197.
|
|
[26]
|
N. Du, Y. E. Xu, H. Zhang, C. X. Zhai and D. R. Yang. Selective synthesis of Fe2O3 and Fe3O4 nanowires via a single precursor: A general method for metal oxide nanowires. Nanoscale Research Letters, 2010, 5(8): 1295-1300.
|
|
[27]
|
M. Nath, B. A. Parkinson. A simple sol-gel synthesis of super- conducting MgB2 nanowires. Advanced Materials, 2006, 18(14): 1865-1868.
|
|
[28]
|
X. G. Wen, S. H. Yang. Cu2S/Au core/sheath nanowires prepared by a simple redox deposition method. Nano Letters, 2002, 2: 451-454.
|
|
[29]
|
S. Xu, Z. L. Wang. One-dimensional ZnO nanostructures: Solu- tion growth and functional properties. Nano Research, 2011, 4 (11): 1013-1098.
|
|
[30]
|
K. Q. Peng, M. L. Zhang, A. J. Lu, N. B. Wong, R. Q. Zhang and S. T. Lee. Ordered silicon nanowire arrays via nanophere lithography and metal-induced etching. Applied Physics Letters, 2007, 90: 1-3.
|
|
[31]
|
Z. Huang, H. Fang and J. Zhu. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Advanced Materials, 2007, 19(5): 744-748.
|
|
[32]
|
M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. Jour- nal of Physical Chemistry B, 2008, 112(12): 4444-4450.
|
|
[33]
|
K. Q. Peng, X. Wang, X. L. Wu and S. T. Lee. Platinum nano- particle decorated silicon nanowires for efficient solar energy conversion. Nano Letters, 2009, 9(11): 3704-3709.
|
|
[34]
|
V. P. Menon, C. R. Martin. Fabrication and evaluation of nano- electrode ensembles. Analytical Chemistry, 1995, 67(13): 1920- 1928.
|
|
[35]
|
D. J. Sellmyer, M. Zheng and R. Skomski. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. Journal of Physics: Condensed Matter, 2001, 13: 433-436.
|
|
[36]
|
Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim and C. M. Lieber. Logic gates and computation from assembled nanowire build-ing blocks. Science, 2001, 294(55445): 1313-1317.
|
|
[37]
|
J. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, R. J. Say- kally and P. Yang. Single gallium nitride nanowire lasers. Nature Materials, 2002, 1: 101-110.
|
|
[38]
|
C. Z. Li, H. X. He, A. Bogozi, J. S. Bunch and N. J. Tao. Mole- cular detection based on conductance quantization of nanowires. Applied Physics Letters, 2000, 76(10): 1333-1335.
|
|
[39]
|
E. C. Walter, F. Faview and R. M. Penner. Palladium mesowire arrays for fast hy-drogen sensors and hydrogen-actuated switches. Analytical Chemistry, 2002, 74(7): 1546-1553.
|
|
[40]
|
Y. Cui, Q. Wei, H. Park and C. M. Lie-ber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289-1292.
|
|
[41]
|
M. Law, H. Kind, B. Messer, F. Kim and D. Yang. Novel achiral biphenol-derived diastereomeric oxovanadium (IV) complexes for highly enantioselective oxidative coupling of 2-naphthols. Angewandte Chemie-International Edition, 2002, 114(23): 4714- 4717.
|
|
[42]
|
C. Dekker. Carbon nanotubes as molecular quantum wires. Phy- sics Today, 1999, 5(1): 22-28.
|
|
[43]
|
H. Kind, H. Yan, M. Law, B. Messer and P. Yang. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158-160.
|
|
[44]
|
J. Black, H. Lowckwood and S. Mayburg. Recombination radiation in GaAs. Journal of Applied Physics, 1963, 34(1): 178-180.
|
|
[45]
|
M. G. Craford. LEDs challenge the incandescents. Circuits and Devices Magazine, 1992, 8(1): 25-29.
|
|
[46]
|
H. Matsunami, M. Ikeda A. Suzaki and T. Tanaka. SiC blue LED’s by liquid-phase epitaxy. Transactions on Electron Devices, 1997, 24: 958-961.
|
|
[47]
|
Z. Zhong, F. Qian, D. Wang and C. M. Lieber. Synthesis of p- type gallium nitride nanowires for electronic and photonic nano- devices. Nano Letters, 2003, 3(3): 343-346.
|
|
[48]
|
F. A. Ponce, D. P. Bour. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 1997, 386(6623): 351- 359.
|
|
[49]
|
T. Kobayashi, S. Egawa, M. Sawada and T. Honda. GaN-based Schottky-type UV light-emitting diodes and their integra-tion for flat-panel displays. Physica Status Solidi C, 2007, 4(1): 61-64.
|
|
[50]
|
S. K. Lee, T. H. Kim, S. Y. Lee, K. C. Choi and P. Yang. High- brightness gallium nitride nanowire UV-blue light emitting di-odes. Philosophical Magazine, 2007, 87(14-15): 2105-2115.
|
|
[51]
|
H. L. Zhou, S. J. Chua, H. Pan, Y. W. Zhu, T. Osipowicz, W. Liu, K. Y. Zang, Y. P. Feng and C. H. Sow. Morphology controllable ZnO growth on facet-controlled epitaxial lateral overgrown GaN/sapphire templates. Journal of Physical Chemistry C, 2007, 111(17): 6405-6410.
|
|
[52]
|
J. Bao, M. A. Zimmler and F. Capasso. Broadband ZnO single- nanowire light-emitting diode. Nano Letters, 2006, 6(8): 1719- 1722.
|
|
[53]
|
M. C. Jeong, B. Y. Oh, M. H. Ham, S. W. Lee and J. Myoung, Min ZnO-nanowire-inserted GaN/ZnO heterojunction light-emit- ting diodes. Small, 2007, 3: 586-572.
|
|
[54]
|
D. C. Kim, W. S. Han, B. H. Kong and H. K. Cho. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Physica B, 2007, 401: 386- 390.
|
|
[55]
|
H. Gao, F. Yan, J. Li, Y. Zeng and J. Wang. Synthesis and char- acterization of ZnO nanorods and nanoflowers grown on GaN- based LED epiwafer using a solution deposition method. Journal of Physics D: Applied Physics, 2007, 40(12): 3654-3658.
|
|
[56]
|
A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koiinuma and M. Kawasali. Repeated temperature modula- tion epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4(1): 42-46.
|
|
[57]
|
X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen and Z. L. Wang. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Advanced Materials, 2009, 21(27): 2767-2770.
|
|
[58]
|
B. O’Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature, 1991, 353(6346): 737-740.
|
|
[59]
|
W. U. Uynh, J. J. Dittmer and A. P. Alivi-satos. Hybrid nano- rod-polymer solar cells. Science, 2002, 295(5564): 2425-2427.
|
|
[60]
|
M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455-459.
|
|
[61]
|
X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu and Z. L. Wang. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 2006, 6(12): 2768- 2772.
|