| [1] | K. L. Adams, J. R. King, R. H. Tew. Beyond-all-orders effects in muliple-scales asymptonics: Travelling-wave equations to the Kuramoto- Sivashinsky equation. Journal of Engineering Mathematics, 2003, 45(3-4) 197-226. | 
                     
                                
                                    
                                        | [2] | E. Cerpa, A. Mercado. Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. Journal of Differential Equations, 2011, 250(4): 2024-2044. | 
                     
                                
                                    
                                        | [3] | S. Publjevic. Boundary model predictive control of Kuramoto-Sivashinsky equation with input and state constraints. Computers & Chemical Engineering, 2011, 34(10): 1655-1661. | 
                     
                                
                                    
                                        | [4] | L. Molinet. Local disspativity in L2 for the Kuramoto-Sivashinsky equation in spatial dimension 2. Journal of Dynamics and Differential Equations, 2000, 12(3): 533-556. | 
                     
                                
                                    
                                        | [5] | C. I. Byrnes, D. S. Gilliam, C. Hu and V. I. Shubov. Zero dynamics boundary control for regulation of the Kuramoto-Sivashinsky equation. Mathematical and Computer Modelling, 2010, 52(5-6): 875-891. | 
                     
                                
                                    
                                        | [6] | D. Wilczak. Chaos in the Kuramoto-Sivashinsky equation: A computer-assisted proof. Journal of Differential Equations, 2003, 194(2): 433- 459. | 
                     
                                
                                    
                                        | [7] | W. C. Troy. The existence of Steady of Kuramoto-Sivashinsky equation. Journal of Differential Equations, 1989, 82(2): 269-313. | 
                     
                                
                                    
                                        | [8] | N. Akroune. Regularity of the attractor for a weakly damped nonlinear Schrodinger equation on  . Applied Mathematics Letters, 1999, 12(1): 45-48. | 
                     
                                
                                    
                                        | [9] | C. S. Zhu. Attractors of the nonlinear Schrodinger equation. Communications in Mathematical Analysis, 2008, 4(2): 67-75. | 
                     
                                
                                    
                                        | [10] | O. Goubet. Global attractor for weakly damped nonlinear Schrodinger equations in  . Nonlinear Analysis Theory, 2009, 71(2): 317-320. | 
                     
                                
                                    
                                        | [11] | J. M. Ghidaglia, R. Temam. Attractors for damped nonlinear hyperbolic equations. Journal de Mathématiques Pures et Appliquées, 1987, 66: 273-319. | 
                     
                                
                                    
                                        | [12] | E. Ezzoug, W. Kechiche and E. Zahrouni. Finite dimensional global attractor for a semi-discrete nonlinear Schrodinger equation with a point defect. Applied Mathematics and Computation, 2011, 217(19): 7818-7830. | 
                     
                                
                                    
                                        | [13] | M. Abounouh. Global attractor for a time discretization of damped forced KdV equation, to appear. |