|
[1]
|
M. Brust, M. Walker, D. Bethell, et al. Synthesis of thiol-deri- vatised gold nanoparticles in a two-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications, 1994, 7: 801-802.
|
|
[2]
|
S. Chen, R. W. Murray. Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. The Jour- nal of Physical Chemistry B, 1999, 103: 9996-10000.
|
|
[3]
|
E. Connor, J. Mwamuka, A. Gole, C. Murphy and M. Wyatt. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1: 325-327.
|
|
[4]
|
R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde and M. Sastry. Bio-compatibility of gold nanoparticles and their en- docytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 2005, 21: 10644-10654.
|
|
[5]
|
Y. Pan, S. Neuss, A. Leifert, M. FischIer, F. Wen, U. Simon, et a1. Size-dependent cytotoxicity of goid nanoparticles. Small, 2007, 3: 1941-1949.
|
|
[6]
|
Y. S. Chen, Y. C. Hung, I. Liau and G. S. Huang. Assessment of the in vivo toxicity of gold nanoparticles.Nanoscale Research Letters, 2009, 4: 858-864.
|
|
[7]
|
H. Johnston, G. Hutchison, S. Christensen Peters and S. Hankin. Stone A review of the fn vivo and fn vitro toxicity of silver and gold particulates: Particle atributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxi- cology, 2010, 40: 328-346.
|
|
[8]
|
B. Chithrani, A. Ghazani and W. Chan. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 2006, 6: 662-668.
|
|
[9]
|
Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, et a1. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 2009, 5: 2067-2076.
|
|
[10]
|
J. Li, L. Zou, D. Hartono, C. Ong, B. Bay and L. Yung. Gold nanoparticles induce oxidative damage in lung fibroblasts in vi- tro. Advanced Materials, 2008, 20: 138-142.
|
|
[11]
|
G. Sonavane, K. Tomoda and K. Makino. Biodistribution of coll- oidal gold nanoparticles after intravenous administration effect of particle size. Colloids and Surfaces B: Biointerfaces, 2008, 66: 274-280.
|
|
[12]
|
W. Cho, S. Kim, B. Han, W. Son and J. Jeong. Comparion of gene expression proflles in mice liver following intravenous in- jection of 4 and 100nm-sized PEG-coated gold nanopartlcles. Toxicology Letters, 2009, 191: 96-102.
|
|
[13]
|
S. Kumar, N. Harrison, R. Richards-Kortum and K. Sokolov. Plasmonic nanosensors for imaing intraceIluolar biomarkers in live ceils. Nano Letters, 2007, 7: 1338-1343.
|
|
[14]
|
P. Zrazhevskiy, X. Gao. Multifunctional quantum dots for per- sonalized medicine. Nano Today, 2009, 4: 414-428.
|
|
[15]
|
R. SperIing, P. RiVera Gil, F. Zhang, M. Zanella and W. Parak. Biological applications of gold nanoparticies. Chemical Society Reviews, 2008, 37: 1896-1908.
|
|
[16]
|
J. Roth. The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemis- try. Histochemistry and Cell Biology, 1996, 106: 1-8.
|
|
[17]
|
S. Lee, H. Chon, M. Lee, J. Choo, S. Lee, et al. Surface en- hanced raman scattering imaging of HER2 cancer markers over- expressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosensors and Bioelectronics, 2009, 24: 2260- 2263.
|
|
[18]
|
J. Kneipp, H. Kneipp, B. Wittig and K. Kneipp. Novel optical nanosensors for probing and imaging live cells. Nanomedicine, 2010, 6: 214-226.
|
|
[19]
|
S. H. Lee, K. H. Bae, S. H. Kim, K. R. Lee and T. G. Park. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. International Jour- nal of Pharmaceutics, 2008, 364: 94-101.
|
|
[20]
|
C. Kim, P. Ghosh and V. Rotello. Multimodal drug delivery using gold nanoparticles. Nanoscale, 2009, 1: 61-67.
|
|
[21]
|
B. Duncan, C. Kim and V. M. Rotello. Gold nanoparticle plat- forms as drug and biomacromo-lecule delivery systems. Journal of Controlled Release, 2010, 148: 122-127.
|
|
[22]
|
W. H. de Jong, P. J. A. Borm. Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine, 2008, 3: 133-149.
|
|
[23]
|
J. Sakamoto, A. Annapragada, P. Decuzzi and M. Ferrari. Anti- biological barrier nanovector technology for cancer applica- tions. Expert Opinion on Drug Delivery, 2007, 4: 359-369.
|
|
[24]
|
G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, et a1. Influence of anchoring ligands and particle size on the coloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials, 2009, 30: 1928-1936.
|
|
[25]
|
X. H. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed. Plasmonic photothermal therapy (PPTT) using gold nanoparti- cles. Lasers in Medical Science, 2008, 23: 217-228.
|
|
[26]
|
C. Liu, B. Q. Li and C. C. Mi. Fast transient thermal analysis of gold nanoparticles in tissue-like medium. IEEE Transactions on Nanobioscience, 2009, 8: 271-280.
|
|
[27]
|
S. Link, M. A. El-Sayed. Shape and size dependence of radia- tive, nonradiative and photothermal properties of gold nano- crystals. International Reviews in Physical Chemistry, 2000, 19: 409-453.
|
|
[28]
|
J. Hainfeld, D. Slatkin and H. Smilowitz. The use of gold nano- particles to enhance radiotherapy in mice. Physics in Medicine and Biology, 2004, 49: N309-N315.
|
|
[29]
|
K. T. Buterworth, J. A. Coulter, S. Jaln, J. Forker, S. J. McMa- hon, G. Schettino, et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: Potential application for cancer therapy. Nanotechnology, 2010, 21: 295101.
|
|
[30]
|
R. Mukhedee Bhattacharya, L. Wang, S. Basu, J. A. Nagy, et a1. Antiangiogenic properties of gold nanoparticles. Clinical Cancer Research, 2005, 11: 3530-3534.
|
|
[31]
|
R. Bhattacharya, P. Mukhedee. Biological properties of naked metal nanoparticles. Advanced Drug Delivery Reviews, 2008, 60: 1289-1306.
|
|
[32]
|
M. A. Hollinger. Toxicological aspects of topical silver pharma- ceuticals. Critical Reviews in Toxicology, 1996, 26: 255-260.
|
|
[33]
|
M. E. Innes, N. Umraw and J. S. Fish. The use of silver coated dressings on donor site wounds: A prospective, controlled matched pair study. Burns, 2001, 27: 621-627.
|
|
[34]
|
K. M. V. Poon, A. Burd. In vitro cytotoxity of silver: Implication for clinical wound care. Burns, 2004, 30: 140-147.
|
|
[35]
|
K. Soto, K. M. Garza and L. E. Murr. Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 2007, 3: 351-358.
|
|
[36]
|
K. F. Soto, A. Carrasco, T. G. Powell, et al. Comparative in vitro cytotoxixity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. Journal of Nanoparticle Research, 2005, 19: 975-983.
|
|
[37]
|
S. M. Hussain, K. L. Hess, J. M. Gearhart, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro, 2005, 19: 975-983.
|
|
[38]
|
K. Kawata, M. Osawa and S. Okabe. In vitro toxicity of silver nanoparticles at nonvytotoxic does to heoG2 human hepatoma cells. Environmental Science & Technology, 2009, 43: 6046- 6051.
|
|
[39]
|
J. W. Allen, J. C. Liang, A. V. Carrano, et al. Review of literature on chemical-induced aneuploidy in mammalian male germ cells. Mutation Research, 1986, 167: 123-137.
|
|
[40]
|
J. L. Tilly. Molecular and genetic basis of normal and toxicant- induced apoptosis in female germ cells. Toxicology Letters, 1998, 103: 497-501.
|
|
[41]
|
P. J. Borm, W. Kreyling. Toxicological hazards of inhaled nano- particles-potential implications for drug delivery. Journal of Na- noscience and Nanotechnology, 2004, 4: 521-531.
|
|
[42]
|
Y. Chen, Z. Xue, D. Zheng, et al. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Current Gene Therapy, 2003, 3: 273- 279.
|
|
[43]
|
E. Vlachou, E. Chipp, E. Shale, et al. The safety of nanocrystal- line silver dressings on burns: a study of systemic silver absorp- tion. Burns, 2007, 33: 979-985.
|
|
[44]
|
S. H. Shin, K. YeM. The effects of nano-silver on the prolifera- tion and cytokine exipression by peripheral blood mononuclear cells. International Immunopharmacology, 2007, 1813-1818.
|
|
[45]
|
H. J. Yen, S. H. Hsu and C. L. Tsai. Cytotoxicity and immuno- logical response of gold and silver nanoparticles of different sizes. Small, 2009, 5: 1553-1561.
|
|
[46]
|
S. Nie, S. R. Emoty. Probing single molecules and single nano- particles by surface-enhanced Raman scattering. Science, 1997, 275: 1102-1106.
|
|
[47]
|
D. J. Anderson, M. Moskovits. A SERS-active system based on silver nanoparticles tethered to a deposited silver film. The Jour- nal of Physical Chemistry B, 2006, 110: 13722-13727.
|
|
[48]
|
X. Li, X. Zhang, W. Xu, et al. Mercaptoacetic acid-capped silver nanoparticles colloid: Formation, morphology, and SERS acti- vity. Langmuir, 2003, 19: 4285-4290.
|
|
[49]
|
D. Graham, K. Faulds and E. W. Smith. Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chemical Communications, 2006, 42: 4363-4371.
|
|
[50]
|
J. Hu, R. S. Sheng, Z. S. Xu, et al. Sutface-enhanced raman- sepctroscopy of lysozyme. Spectrochimica Acta, 1995, 51: 1087- 1096.
|
|
[51]
|
P. Miskovsky, D. Jancura, S. S. Cortes, et al. Antiretrovirally active drug hypercin binds the IIA subdomain of human serum albumin: Resonance Raman and surface-enhanced Taman spec- troscopy study. Journal of the American Chemical Society, 1998, 120: 6374-6379.
|
|
[52]
|
P. Miskovsky, J. Hritz, S. S. Cortes, et al. Interaction of hypercin with serum albumins: Surface-enhanced Raman spectroscopy, resonance Taman spectroscopy and molecular modeling study. Photochemistry and Photobiology, 2001, 74: 172-183.
|
|
[53]
|
X. Dou, Y. M. Jung, Z. Q. Cao, et al. Surface-enhanced Raman scattering of biologial moleculs on metal colloid II: Effects of aggregation of gold colloid and comparison of effects of pH of glycine solutions between gold and silver colloids. Journal of Applied Spectroscopy, 1999, 53: 1440-1447.
|
|
[54]
|
T. Vo-Dinh, D. L. Stokes, G. D. Griffin, et al. Surface-enhanced Raman scattering (SETS) method and instrumentation for geno- mics and biomedical analysis. Journal of Raman Spectroscopy, 1999, 30: 785-793.
|
|
[55]
|
Y. M. C. Cao, R. C. Jin and C. A. Mirkin. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297: 1592-1598.
|
|
[56]
|
V. J. Pugh, H. Szmacinski, W. E. Moore, et al. Submictometer spatial resolution of metal-enhanced fluorescence. Applied Spec- troscopy, 2003, 57: 1592-1598.
|
|
[57]
|
G. Liu, X. Li, B. Qin, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters, 2004, 17: 961-966.
|
|
[58]
|
K. Guo, Q. Pan, L. Wang, et al. Nano-scale cop-per-coated gra- phite as anode material for lithium-ion batteries. Journal of Applied Spectroscopy, 20002, 32: 679-685.
|
|
[59]
|
N. Cioffi, N. Ditaranto, L. Torsi, et al. Analytical characteriza- tion of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Analytical and Bioanalytical Chemistry, 2005, 381: 607-616.
|
|
[60]
|
B. Jese, R. L. Mary. Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. The Journal of Nutritional Biochemistry, 2004, 15: 316-322.
|
|
[61]
|
P. Z. Bjorn, H. D. Hermann, L. Max, et al. Epidemiological in- vesttigation on chronic copper toxicity to children exposed via the public drinking water supply. Science of the Total Environ- ment, 2003, 302: 127-144.
|
|
[62]
|
C. M. Galhardi, Y. S. Diniz, L. A. Faine, et al. Toxicity of copper intake: Lipid profile, oxidative stress and susceptibility to renal dysfunction. Food and Chemical Toxicology, 2004, 42: 2053- 2060.
|
|
[63]
|
雷荣辉. 纳米铜肝肾毒性及其机制研究. 北京: 军事医学科学院毒物药物研究所博士论文, 2008.
|
|
[64]
|
S. Lynch, B. Frei. Reduction of copper, but not iron, by human low density lipoprotein (LDL). ASBMB, 1995, 270(10): 5158- 5163.
|
|
[65]
|
J. Teeguarden, P. Hinderliter, G. Orr. Particokinetics in vitro: Do- simetry considerations for in vitro nanoparticle toxicity assess- ments. Toxicological Sciences, 2007, 95(2): 300-312.
|
|
[66]
|
N. Zamzami, P. Marchetti and M. Castedo. Inhibitors of per- meability trasition interfere with the disruption of the mitochon- drial trasmembrane potential during apoptosis. FEBS Letters, 1996, 384(1): 53-57.
|
|
[67]
|
S. Woo, I. Park and M. Park. Arsenic trioxide induces apoptosis through a reactive oxygen species dependent parhway and loss of mitochondrial membrane potential in Hela cells. International Journal of Oncology, 2002, 21(1): 57-63.
|
|
[68]
|
K. Midander, P. Cronholm, H. L. Karlsson, et al. Surface char- acteristics, copper release, and toxicity of nano- and micrometer- sized copper and copper (II) oxide particles: A cross-disciplinary study. Small, 2009, 5(3): 389-399.
|
|
[69]
|
A. Bonelli, J. Ponti, M. Farina, et al. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis, 2008, 23(5): 377-382.
|
|
[70]
|
L. K. Limbach, Y. Li, R. N. Grass, et al. Oxide nanoparticle up- take in human lung fibroblaste: Effects of particle size, agglo- meration, and diffusion at low cocetrations. Environmental Sci- ence & Technology, 2005, 39: 9370-9376.
|
|
[71]
|
Z. Chen, H. Meng, G. Xing, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 2006, 163: 109- 120.
|