鞭毛模板制备贵金属纳米颗粒/TiO2复合薄膜及光催化活性研究
Flagella-Templated Process to Noble Metal Nanoparticles/TiO2 Composite Films and Their Photocatalytic Activity
                  
              
    
                  
                    
                    摘要: 
	通过大肠杆菌鞭毛控制Au和Ag的纳米颗粒的生长及组装,获得稳定的鞭毛/金属纳米颗粒分散液。以此分散液以及透析钛溶胶为原料,通过浸渍提拉法制备TiO2/Au(Ag)/TiO2夹心结构的复合薄膜。通过透射电子显微镜(TEM)、紫外–可见分光光度计(UV-visible spectroscopy)对鞭毛、鞭毛/贵金属纳米颗粒进行表征。研究发现,该复合膜的夹心结构起到了稳定金属纳米颗粒的作用,而金属纳米颗粒的引入赋予了该复合膜可见光催化活性。
                 
              
                
                    Abstract: In this work, flagella are used to control over the growth and assembly of Au and Ag nanoparticles, and a stable dispersion of flagella/metal nanoparticle is successfully obtained. A composite film with a TiO2/Au(Ag)/TiO2 sandwich structure is prepared by means of a dip-coating method where a dialyzed TiO2 solution and flagella stabilized Au and Ag nanoparticles are used as raw materials. TEM and UV-visible spectroscopy characterizations reveal that the sandwich structures play a role in stabilizing metal nanoparticles in the composite films and visible light photocatalytic activity is attributed to the existence of Au and Ag nanoparticles.
                
                   
                  
    
  
 
     
    
    
                
         
                
                
                 
                
                    
                        参考文献
                        
                            
                                    
                                        | [1] | D. Zhang, T. Yoshida, T. Oekermann, et al. Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Advanced Functional Materials, 2006, 16: 1228-1234. | 
                     
                                
                                    
                                        | [2] | P. Innocenzi, L. Malfatti and G. J. A. A. Soler-Illia. Hierarchical mesoporous films: From self-assembly to porosity with different length scales. Chemistry of Materials, 2011, 23: 2501-2509. | 
                     
                                
                                    
                                        | [3] | S. S. Soni, M. J. Henderson, J.-F. Bardeau, et al. Visible-light photocatalysis in titania-based mesoporous thin films. Advanced Materials, 2008, 20: 1493-1498. | 
                     
                                
                                    
                                        | [4] | W. Hou, S. B. Cronin. A review of surface plasmon resonance-enhanced photocatalysis. Advanced Functional Materials, 2012, 23(13): 1612-1619. | 
                     
                                
                                    
                                        | [5] | L. D. Rogatis, M. Cargnello, V. Gombac, et al. Embedded phases: A way to active and stable catalysts. Chem SusChem, 2010, 3(1): 24-42. | 
                     
                                
                                    
                                        | [6] | M. T. Kumara, B. C. Tripp and S. Muralidharan. Self-assembly of metal nanoparticles and nanotubes on bioengineered flagella scaffolds. Chemistry of Materials, 2007, 19(8): 2056-2064. | 
                     
                                
                                    
                                        | [7] | 沈萍. 微生物学[M]. 北京: 高等教育出版社, 2000: 59-60. |