[1]
|
刘宣勇编著. 生物医用钛材料及其表面改性[M]. 北京: 化学工业出版社, 2009.
|
[2]
|
Z. P. Yang, S. H. Si, X. M. Zeng, et al. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: A quartz crystal microbalance study. Acta Biomaterialia, 2008, 4(3): 560- 568.
|
[3]
|
G. Mendonca, D. B. S. Mendonca, F. J. L. Aragao, et al. Advancing dental implant surface technology from micron- to nano-topography. Biomaterials, 2008, 29(28): 3822-3835.
|
[4]
|
X. B. Zhao, X. Y. Liu, C. X. Ding and P. K. Chu. Effect of plasma treatment on bioactivity of TiO2 coatings. Surface and Coatings Technology, 2007, 201(15): 6878-6881.
|
[5]
|
H. W. Kim, Y. H. Koh, L. H. Li, et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials, 2004, 25(13): 2533-2538.
|
[6]
|
Y. Han, S. H. Hong and K. W. Xu. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology, 2003, 168: 249-258.
|
[7]
|
S. N. Nayab, F. H. Jones and I, Olsen. Effects of calciu ion-im- plantation of titanium on bone cell function in vitro. Jounal of Biomedical Materials Research Part A, 2007, 83A: 296-302.
|
[8]
|
P. Schmuki, P. Roy and S. Berger. TiO2 nanotube arrays: Synthesis and applications. Angewandte Chemie-International Edition, 2011, 50(13): 2904-2939.
|
[9]
|
O. K. Varghese, D. W. Gong, M. Paulose, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. Journal of Materials Research, 2003, 18(1): 156- 165.
|
[10]
|
S. Oh, K. S. Brammer, Y. S. J. Li, et al. Stem cell fate dictated solely by altered nanotube dimension. Proceeding of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130-2135.
|
[11]
|
杨虎, 钟波, 刘琼荪编著. 应用数理统计[M]. 北京: 清华大学出版社, 2011.
|
[12]
|
E. Balaur, J. M. Macak, L. Taveira and P. Schmuki. Tailoring the wettability of TiO2 nanotube layers. Electrochemistry Communications, 2005, 7(10): 1066-1070.
|