|
[1]
|
M. L. Metzker. Sequencing technologies—The next generation. Nature Review Genetic, 2010, 11(1): 31-46.
|
|
[2]
|
E. R. Mardis. The impact of next-generation sequencing tech- nology on genetics. Trends in Genetics, 2008, 24(3): 133-141.
|
|
[3]
|
O. Morozova, M. A. Marra. Applications of next-generation se- quencing technologies in functional genomics. Genomics, 2008, 92(5): 255-264.
|
|
[4]
|
R. L. Strausberg, S. Levy and Y. H. Rogers. Emerging DNA sequencing technologies for human genomic medicine. Drug Discovery Today, 2008, 13(13-14): 569-577.
|
|
[5]
|
E. Pettersson, J. Lundeberg and A. Ahmadian. Generations of sequencing technologies. Genomics, 2009, 93(2): 105-111.
|
|
[6]
|
C. A. Hutchison III. DNA sequencing: Bench to bedside and beyond. Nucleic Acids Research, 2007, 35(18): 6227-6237.
|
|
[7]
|
M. Pop. Genome assembly reborn: Recent computational chal- lenges. Briefings in Bioinformatics, 2009, 10(4): 354-366.
|
|
[8]
|
R. Staden. A strategy of DNA sequencing employing computer programs. Nucleic Acids Research, 1979, 6(7): 2601-2610.
|
|
[9]
|
N. J. Loman, R. V. Misra and T. J. Dallman. Performance com- parison of benchtop high-throughput sequencing platforms. Na- ture Biotechnology, 2012, 30(5): 434-439.
|
|
[10]
|
C. Alkan, S. Sajjadian and E. E. Eichler. Limitations of next- generation genome sequence assembly. Nature Methods, 2011, 8(1): 61-65.
|
|
[11]
|
P. Green. Whole-genome disassembly. Proceedings of the National Academy of Sciences of the USA, 2002, 99(7): 4143- 4144.
|
|
[12]
|
T. J. Treangen and S. L. Salzberg. Repetitive DNA and next- generation sequencing: Computational challenges and solutions. Nature Reviews: Genetics, 2012, 13(1): 36-46.
|
|
[13]
|
D. A. Wheeler, et al. The complete genome of an individual by massively parallel DNA sequencing. Nature, 2008, 452: 872- 876.
|
|
[14]
|
D. R. Bentley, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 2008, 456(7218): 53-59.
|
|
[15]
|
Y. Benjamini, T. P. Speed. Summarizing and correcting the GC content bias in high throughput sequencing. Nucleic Acids Re- search, 2012, 40(10): e72.
|
|
[16]
|
M. Pop. Genome assembly reborn: Recent computational chal- lenges. Briefings in bioinformatics, 2009, 10(4): 354-366.
|
|
[17]
|
X. Huang, S. P. Yang. Generating a genome assembly with PCAP. Current Protocols in Bioinformatics, 2005, 11: 3.
|
|
[18]
|
D. Hernandez, P. Francois, L. Farinelli, M. Steras and J. Sch- renzel. De novo bacterial genome sequencing: Millions of very short read assembled on a desktop computer. Genome Research, 2008, 18(5): 802-809.
|
|
[19]
|
F. Paul, B. Ewan. Sense from sequence reads: Methods for align- ment and assembly. Nature Methods, 2009, 6(11): S6-S12.
|
|
[20]
|
S. Batzoglou, D. B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger, J. P. Mesirov and E. S. Lander. ARACHNE: A whole-genome shotgun assembler. Genome Research, 2002, 12(1): 177-189.
|
|
[21]
|
R. L. Warren, G. G. Sutton, S. J. M. Jones and R. A. Holt. As- sembling millions of short DNA sequences using SSAKE. Bio- informatics. 2007, 23(4): 500-501.
|
|
[22]
|
J. C. Dohm, C. Lottaz, T. Borodina and H. Himmelbauer. SHARCGS, a fast and highly accurate short-read assembly algo- rithm for denovo genomic sequencing. Genome Research, 2007, 17(11): 1697-1706.
|
|
[23]
|
W. R. Jeck, J. A. Reinhardt, D. A. Baltrus, M. T. Hickenbotham, V. Magrini, et al. Extending assembly of short DNA sequences to handle error. Bioinformatics, 2007, 23(21): 2942-2944.
|
|
[24]
|
D. W. Bryant Jr., W. K. Wong and T. C. Mockler. QSRA: A quality-value guided de novo short read assembler. BMC Bioin- formatics, 2009, 10: 69.
|
|
[25]
|
G. G. Sutton, O. White, M. D. Adams and A. R. Kerlavage. TIGR assembler: A new tool for assembling large shotgun se- quencing projects. Genome Science and Technology, 1995, 1(1): 9-19.
|
|
[26]
|
M. J. P. Chaisson, P. A. Pevzner. Short read fragment assembly of bacterial genomes. Genome Research, 2007, 18(2): 324-330.
|
|
[27]
|
J. Butler, I. MacCallum, M. Kleber, I. Shlyakhter, M. K. Bel- monte, et al. ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Research, 2008, 18(5): 810-820.
|
|
[28]
|
D. R. Zerbino, E. Birney. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 2008, 18(5): 821-829.
|
|
[29]
|
J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, et al. ABySS: A parallel assembler for short read sequence data [J]. Genome Research, 2009, 19(6): 1117-1123.
|
|
[30]
|
R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen, H. Yang and J. Wang. De novo assembly of human genomes with massively parallel short read sequenc- ing, Genome Research, 2009, 20(2): 265-272.
|
|
[31]
|
S. Steven, L. Phillippy, M. Adam and Z. Aleksey. GAGE: A critical evaluation of genome assemblies and assembly. Genome Research, 2012, 22(3): 557-567.
|
|
[32]
|
S. Batzoglou. Algorithmic challenges in mammalian genome sequence assembly. In: M. Dunn, L. Jorde, P. Little and S. Subramaniam, Eds., Encyclopedia of genomics, proteomics and bioinformatics. Hoboken: John Wiley and Sons, 2005.
|
|
[33]
|
M. Pop. McGraw-Hill 2006 yearbook of science and technology. New York: McGraw-Hill, 2005.
|
|
[34]
|
G. Sutton, I. Dew. Shotgun fragment assembly. In: I. Rigoutsos and G. Stephanopoulos, Eds., Systems biology: Genomics. New York: Oxford University Press, 2007: 79-117.
|
|
[35]
|
B. Ewing, L. Hillier, M. C. Wendl and P. Green. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research, 1998, 8(3): 175-185.
|
|
[36]
|
E. S. Lander, M. S. Waterman. Genomic mapping by finger- printing random clones: A mathematical analysis. Genomics, 1988, 2(3): 231-239.
|
|
[37]
|
M. C. Wendl, R. H. Waterston. Generalized gap model for bacte- rial artificial chromosome clone fingerprint mapping and shot- gun sequencing. Genome Research, 2002, 12(12): 1943-1949.
|
|
[38]
|
M. Pop. Genome assembly reborn: Recent computational chal- lenges. Briefings in Bioinformatics, 2009, 10(4): 354-366.
|
|
[39]
|
M. Pop, S. L. Salzberg. Bioinformatics challenges of new se- quencing technology. Trends in Genetics, 2008, 24(3): 142-149.
|
|
[40]
|
M. Sahli, T. Shibuya. Arapan-S: A fast and highly accurate whole genome assembly software for viruses and small genomes. BMC Research Notes, 2012, 5: 243.
|
|
[41]
|
P. E. C. Compeau, P. A. Pevzner and G. Tesler. How to apply de Bruijn graphs to genome assembly. Nature Biotechnology, 2011, 29: 987-991.
|
|
[42]
|
H. Fleischner. Eulerian graphs and related topics. London: El- sevier Science, 1990.
|
|
[43]
|
P. A. Pevzner, H. X. Tang and M. S. Waterman. An Eulerian path approach to DNA fragment assembly. Proceedings of the Na- tional Academy of Sciences of the USA, 2001, 98(17): 9748- 9753.
|
|
[44]
|
P. A. Pevzner, H. Tang. Fragment assembly with double-barreled data. Bioinformatics, 2001, 17(1): S225-S233.
|
|
[45]
|
D. Earl, K. Bradnam, J. St. John, et al. Assemblathon 1: A com- petitive assessment of de novo short read assembly. Genome Research, 2011, 21(12): 2224-2241.
|