完全分解和Tate同调
Complete Decomposition and Tate Cohomology
DOI: 10.12677/PM.2025.157201, PDF,   
作者: 苏慧敏, 王久玉:西北师范大学数学与统计学院, 甘肃 兰州
关键词: Tate 同调 GFB -完全平坦分解 平坦维数Tate Homology GFB -Complete Flat Resolution Flat Dimension
摘要: Tate同调理论在同调代数的研究中具有重要意义。文章首先引入了Tate同调的定义, 其次讨论了Tate同调消失的条件, 最后证明了Tate同调的平衡性。
Abstract: Tate’s homology theory is of great significance in the study of homology algebra. This paper first introduces the definition of tate homology. Secondly, discusses the conditions for the disappearance of tate homology. Finally proves the balance of tate homology.
文章引用:苏慧敏, 王久玉. 完全分解和Tate同调[J]. 理论数学, 2025, 15(7): 21-26. https://doi.org/10.12677/PM.2025.157201

参考文献

[1] Buchweitz, R.-O. (1986) Maximal Cohen-Macaulay modules and Tate Cohomology over Goren- Stein Rings. Gottfried Wilhelm Leibniz Universitat Hannover, Preprint.
[2] Farrell, F.T. (1977) An Extension of Tate Cohomology to a Class of Infinite Groups. Journal of Pure and Applied Algebra, 10, 153-161.
https://doi.org/10.1016/0022-4049(77)90018-4
[3] Benson, D.J. and Carlson, J.F. (1992) Products in Negative Cohomology. Journal of Pure and Applied Algebra, 82, 107-129.
https://doi.org/10.1016/0022-4049(92)90116-w
[4] Mislin, G. (1994) Tate Cohomology for Arbitrary Groups via Satellites. Topology and Its Ap- plications, 56, 293-300.
https://doi.org/10.1016/0166-8641(94)90081-7
[5] Goichot, F. (1992) Homologie de Tate-Vogel´equivariante. Journal of Pure and Applied Algebra, 82, 39-64.
https://doi.org/10.1016/0022-4049(92)90009-5
[6] Avramov, L.L. and Martsinkovsky, A. (2002) Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension. Proceedings of the London Mathematical Society, 85, 393-440.
https://doi.org/10.1112/s0024611502013527
[7] Veliche, O. (2005) Gorenstein Projective Dimension for Complexes. Transactions of the Amer- ican Mathematical Society, 358, 1257-1283.
https://doi.org/10.1090/s0002-9947-05-03771-2
[8] Christensen, L. and Jorgensen, D. (2013) Tate (Co)homology via Pinched Complexes. Trans- actions of the American Mathematical Society, 366, 667-689.
https://doi.org/10.1090/s0002-9947-2013-05746-7
[9] Rozas, J.R.G. (1999) Covers and Envelopes in the Category of Complexes of Modules. CRC Press.
[10] Christensen, L.W., Frankild, A. and Holm, H. (2006) On Gorenstein Projective, Injective and Flat Dimensions—A Functorial Description with Applications. Journal of Algebra, 302, 231-279.
https://doi.org/10.1016/j.jalgebra.2005.12.007
[11] Liang, L. (2012) Tate Homology of Modules of Finite Gorenstein Flat Dimension. Algebras and Representation Theory, 16, 1541-1560.
https://doi.org/10.1007/s10468-012-9369-8