学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 15 No. 7 (July 2025)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
完全分解和Tate同调
Complete Decomposition and Tate Cohomology
DOI:
10.12677/PM.2025.157201
,
PDF
,
,
,
被引量
作者:
苏慧敏
,
王久玉
:西北师范大学数学与统计学院, 甘肃 兰州
关键词:
Tate 同调
;
GF
B
-完全平坦分解
;
平坦维数
;
Tate Homology
;
GF
B
-Complete Flat Resolution
;
Flat Dimension
摘要:
Tate同调理论在同调代数的研究中具有重要意义。文章首先引入了Tate同调的定义, 其次讨论了Tate同调消失的条件, 最后证明了Tate同调的平衡性。
Abstract:
Tate’s homology theory is of great significance in the study of homology algebra. This paper first introduces the definition of tate homology. Secondly, discusses the conditions for the disappearance of tate homology. Finally proves the balance of tate homology.
文章引用:
苏慧敏, 王久玉. 完全分解和Tate同调[J]. 理论数学, 2025, 15(7): 21-26.
https://doi.org/10.12677/PM.2025.157201
参考文献
[1]
Buchweitz, R.-O. (1986) Maximal Cohen-Macaulay modules and Tate Cohomology over Goren- Stein Rings. Gottfried Wilhelm Leibniz Universitat Hannover, Preprint.
[2]
Farrell, F.T. (1977) An Extension of Tate Cohomology to a Class of Infinite Groups. Journal of Pure and Applied Algebra, 10, 153-161.
https://doi.org/10.1016/0022-4049(77)90018-4
[3]
Benson, D.J. and Carlson, J.F. (1992) Products in Negative Cohomology. Journal of Pure and Applied Algebra, 82, 107-129.
https://doi.org/10.1016/0022-4049(92)90116-w
[4]
Mislin, G. (1994) Tate Cohomology for Arbitrary Groups via Satellites. Topology and Its Ap- plications, 56, 293-300.
https://doi.org/10.1016/0166-8641(94)90081-7
[5]
Goichot, F. (1992) Homologie de Tate-Vogel´equivariante. Journal of Pure and Applied Algebra, 82, 39-64.
https://doi.org/10.1016/0022-4049(92)90009-5
[6]
Avramov, L.L. and Martsinkovsky, A. (2002) Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension. Proceedings of the London Mathematical Society, 85, 393-440.
https://doi.org/10.1112/s0024611502013527
[7]
Veliche, O. (2005) Gorenstein Projective Dimension for Complexes. Transactions of the Amer- ican Mathematical Society, 358, 1257-1283.
https://doi.org/10.1090/s0002-9947-05-03771-2
[8]
Christensen, L. and Jorgensen, D. (2013) Tate (Co)homology via Pinched Complexes. Trans- actions of the American Mathematical Society, 366, 667-689.
https://doi.org/10.1090/s0002-9947-2013-05746-7
[9]
Rozas, J.R.G. (1999) Covers and Envelopes in the Category of Complexes of Modules. CRC Press.
[10]
Christensen, L.W., Frankild, A. and Holm, H. (2006) On Gorenstein Projective, Injective and Flat Dimensions—A Functorial Description with Applications. Journal of Algebra, 302, 231-279.
https://doi.org/10.1016/j.jalgebra.2005.12.007
[11]
Liang, L. (2012) Tate Homology of Modules of Finite Gorenstein Flat Dimension. Algebras and Representation Theory, 16, 1541-1560.
https://doi.org/10.1007/s10468-012-9369-8
投稿
为你推荐
友情链接
科研出版社
开放图书馆