[1]
|
Dendy, R.O. (1990) Plasma Dynamics. Oxford University Press.
|
[2]
|
Zakharov, V.E. (1972) Collapse of Langmuir Waves. Soviet Physics JETP, 35, 908-914.
|
[3]
|
Boling, G. and Guangwei, Y. (1995) Global Smooth Solution for the Klein-Gordon-Zakharov Equations. Journal of Mathematical Physics, 36, 4119-4124. https://doi.org/10.1063/1.530950
|
[4]
|
Kinoshita, S. (2018) Well-Posedness for the Cauchy Problem of the Klein-Gordon-Zakharov System in 2D. Discrete & Continuous Dynamical Systems-A, 38, 1479-1504. https://doi.org/10.3934/dcds.2018061
|
[5]
|
Kato, I. and Kinoshita, S. (2018) Well-Posedness for the Cauchy Problem of the Klein-Gordon- Zakharov System in Five and Higher Dimensions. Advances in Differential Equations, 23, 725-750. https://doi.org/10.57262/ade/1528855477
|
[6]
|
Ozawa, T., Tsutaya, K. and Tsutsumi, Y. (1999) Well-Posedness in Energy Space for the Cauchy Problem of the Klein-Gordon-Zakharov Equations with Different Propagation Speeds in Three Space Dimensions. Mathematische Annalen, 313, 127-140. https://doi.org/10.1007/s002080050254
|
[7]
|
Guo, Z., Nakanishi, K. and Wang, S. (2014) Global Dynamics below the Ground State Energy for the Klein-Gordon-Zakharov System in the 3D Radial Case. Communications in Partial Differential Equations, 39, 1158-1184. https://doi.org/10.1080/03605302.2013.836715
|
[8]
|
Merle, F. (1996) Blow-Up Results of Viriel Type for Zakharov Equations. Communications in Mathematical Physics, 175, 433-455. https://doi.org/10.1007/bf02102415
|
[9]
|
Grillakis, M., Shatah, J. and Strauss, W. (1987) Stability Theory of Solitary Waves in the Presence of Symmetry, I. Journal of Functional Analysis, 74, 160-197. https://doi.org/10.1016/0022-1236(87)90044-9
|
[10]
|
Grillakis, M., Shatah, J. and Strauss, W. (1990) Stability Theory of Solitary Waves in the Presence of Symmetry, II. Journal of Functional Analysis, 94, 308-348. https://doi.org/10.1016/0022-1236(90)90016-e
|
[11]
|
Lin, C. (1999) Orbital Stability of Solitary Waves for the Klein-Gordon-Zakharov Equations. Acta Mathematicae Applicatae Sinica, 15, 54-64. https://doi.org/10.1007/bf02677396
|
[12]
|
Zheng, X., Shang, Y. and Peng, X. (2016) Orbital Stability of Solitary Waves of the Coupled Klein-Gordon-Zakharov Equations. Mathematical Methods in the Applied Sciences, 40, 2623- 2633. https://doi.org/10.1002/mma.4187
|
[13]
|
Hakkaev, S., Stanislavova, M. and Stefanov, A. (2012) Orbital Stability for Periodic Standing Waves of the Klein-Gordon-Zakharov System and the Beam Equation. Zeitschrift fu¨r Ange- wandte Mathematik und Physik, 64, 265-282. https://doi.org/10.1007/s00033-012-0228-6
|
[14]
|
Wu, Y. (2023) Instability of the Standing Waves for the Nonlinear Klein-Gordon Equations in One Dimension. Transactions of the American Mathematical Society, 376, 4085-4103. https://doi.org/10.1090/tran/8852
|
[15]
|
Li, B., Ohta, M., Wu, Y. and Xue, J. (2020) Instability of the Solitary Waves for the Gener- alized Boussinesq Equations. SIAM Journal on Mathematical Analysis, 52, 3192-3221. https://doi.org/10.1137/18m1199198
|
[16]
|
Jia, R. and Wu, Y. (2025) Instability of the Solitary Waves for the Generalized Benjamin-Bona- Mahony Equation. Calculus of Variations and Partial Differential Equations, 64, Article No. 124. https://doi.org/10.1007/s00526-025-02981-z
|
[17]
|
Guo, Z., Ning, C. and Wu, Y. (2020) Instability of the Solitary Wave Solutions for the General- ized Derivative Nonlinear Schro¨dinger Equation in the Critical Frequency Case. Mathematical Research Letters, 27, 339-375. https://doi.org/10.4310/mrl.2020.v27.n2.a2
|
[18]
|
Yin, S. (2018) Stability and Instability of the Standing Waves for the Klein-Gordon-Zakharov System in One Space Dimension. Mathematical Methods in the Applied Sciences, 41, 4428- 4447. https://doi.org/10.1002/mma.4905
|
[19]
|
Strauss, W.A. (1977) Existence of Solitary Waves in Higher Dimensions. Communications in Mathematical Physics, 55, 149-162. https://doi.org/10.1007/bf01626517
|
[20]
|
Weinstein, M.I. (1985) Modulational Stability of Ground States of Nonlinear Schro¨dinger Equa- tions. SIAM Journal on Mathematical Analysis, 16, 472-491. https://doi.org/10.1137/0516034
|
[21]
|
Ambrosetti, A. and Malchiodi, A. (2007). Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press. https://doi.org/10.1017/cbo9780511618260
|