Klein-Gordon-Zakharov系统驻波解的不稳定性
Instability of the Standing Waves for the Klein-Gordon-Zakharov System
DOI: 10.12677/AAM.2025.147351, PDF,   
作者: 戴玉姣:长沙理工大学数学与统计学院, 湖南 长沙
关键词: Klein-Gordon-Zakharov 系统驻波轨道稳定Virial 等式Klein-Gordon-Zakharov System Standing Waves Orbital Stability Virial Identity
摘要: 本文主要研究 Klein-Gordon-Zakharov(KGZ)系统驻波解在频率临界情况下的轨道稳定性。 为 了研究临界情况的稳定性,本文采用反证法,并结合强制性估计和调制理论,利用守恒量构造有 界的 virial 等式,最终证明了该 KGZ 系统驻波解在临界情况下是轨道不稳定的。
Abstract: In this paper, we focus on the orbital stability of standing wave solutions to the Klein- Gordon-Zakharov (KGZ) system in the critical frequency case. To investigate the stability under this critical condition, we employ a contradiction argument combined with coercivity and modulation theory. By utilizing conserved quantities, we construct a bounded virial-type identity, and ultimately establish the orbital instability of the standing wave solutions.
文章引用:戴玉姣. Klein-Gordon-Zakharov系统驻波解的不稳定性[J]. 应用数学进展, 2025, 14(7): 116-133. https://doi.org/10.12677/AAM.2025.147351

参考文献

[1] Dendy, R.O. (1990) Plasma Dynamics. Oxford University Press.
[2] Zakharov, V.E. (1972) Collapse of Langmuir Waves. Soviet Physics JETP, 35, 908-914.
[3] Boling, G. and Guangwei, Y. (1995) Global Smooth Solution for the Klein-Gordon-Zakharov Equations. Journal of Mathematical Physics, 36, 4119-4124.
https://doi.org/10.1063/1.530950
[4] Kinoshita, S. (2018) Well-Posedness for the Cauchy Problem of the Klein-Gordon-Zakharov System in 2D. Discrete & Continuous Dynamical Systems-A, 38, 1479-1504.
https://doi.org/10.3934/dcds.2018061
[5] Kato, I. and Kinoshita, S. (2018) Well-Posedness for the Cauchy Problem of the Klein-Gordon- Zakharov System in Five and Higher Dimensions. Advances in Differential Equations, 23, 725-750.
https://doi.org/10.57262/ade/1528855477
[6] Ozawa, T., Tsutaya, K. and Tsutsumi, Y. (1999) Well-Posedness in Energy Space for the Cauchy Problem of the Klein-Gordon-Zakharov Equations with Different Propagation Speeds in Three Space Dimensions. Mathematische Annalen, 313, 127-140.
https://doi.org/10.1007/s002080050254
[7] Guo, Z., Nakanishi, K. and Wang, S. (2014) Global Dynamics below the Ground State Energy for the Klein-Gordon-Zakharov System in the 3D Radial Case. Communications in Partial Differential Equations, 39, 1158-1184.
https://doi.org/10.1080/03605302.2013.836715
[8] Merle, F. (1996) Blow-Up Results of Viriel Type for Zakharov Equations. Communications in Mathematical Physics, 175, 433-455.
https://doi.org/10.1007/bf02102415
[9] Grillakis, M., Shatah, J. and Strauss, W. (1987) Stability Theory of Solitary Waves in the Presence of Symmetry, I. Journal of Functional Analysis, 74, 160-197.
https://doi.org/10.1016/0022-1236(87)90044-9
[10] Grillakis, M., Shatah, J. and Strauss, W. (1990) Stability Theory of Solitary Waves in the Presence of Symmetry, II. Journal of Functional Analysis, 94, 308-348.
https://doi.org/10.1016/0022-1236(90)90016-e
[11] Lin, C. (1999) Orbital Stability of Solitary Waves for the Klein-Gordon-Zakharov Equations. Acta Mathematicae Applicatae Sinica, 15, 54-64.
https://doi.org/10.1007/bf02677396
[12] Zheng, X., Shang, Y. and Peng, X. (2016) Orbital Stability of Solitary Waves of the Coupled Klein-Gordon-Zakharov Equations. Mathematical Methods in the Applied Sciences, 40, 2623- 2633.
https://doi.org/10.1002/mma.4187
[13] Hakkaev, S., Stanislavova, M. and Stefanov, A. (2012) Orbital Stability for Periodic Standing Waves of the Klein-Gordon-Zakharov System and the Beam Equation. Zeitschrift fu¨r Ange- wandte Mathematik und Physik, 64, 265-282.
https://doi.org/10.1007/s00033-012-0228-6
[14] Wu, Y. (2023) Instability of the Standing Waves for the Nonlinear Klein-Gordon Equations in One Dimension. Transactions of the American Mathematical Society, 376, 4085-4103.
https://doi.org/10.1090/tran/8852
[15] Li, B., Ohta, M., Wu, Y. and Xue, J. (2020) Instability of the Solitary Waves for the Gener- alized Boussinesq Equations. SIAM Journal on Mathematical Analysis, 52, 3192-3221.
https://doi.org/10.1137/18m1199198
[16] Jia, R. and Wu, Y. (2025) Instability of the Solitary Waves for the Generalized Benjamin-Bona- Mahony Equation. Calculus of Variations and Partial Differential Equations, 64, Article No. 124.
https://doi.org/10.1007/s00526-025-02981-z
[17] Guo, Z., Ning, C. and Wu, Y. (2020) Instability of the Solitary Wave Solutions for the General- ized Derivative Nonlinear Schro¨dinger Equation in the Critical Frequency Case. Mathematical Research Letters, 27, 339-375.
https://doi.org/10.4310/mrl.2020.v27.n2.a2
[18] Yin, S. (2018) Stability and Instability of the Standing Waves for the Klein-Gordon-Zakharov System in One Space Dimension. Mathematical Methods in the Applied Sciences, 41, 4428- 4447.
https://doi.org/10.1002/mma.4905
[19] Strauss, W.A. (1977) Existence of Solitary Waves in Higher Dimensions. Communications in Mathematical Physics, 55, 149-162.
https://doi.org/10.1007/bf01626517
[20] Weinstein, M.I. (1985) Modulational Stability of Ground States of Nonlinear Schro¨dinger Equa- tions. SIAM Journal on Mathematical Analysis, 16, 472-491.
https://doi.org/10.1137/0516034
[21] Ambrosetti, A. and Malchiodi, A. (2007). Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press.
https://doi.org/10.1017/cbo9780511618260