具有变系数旋转惯性的含变系数Kirchhoff型方程的长时间动力学
Long-Time Dynamics of Variable-Coefficient Kirchhoff-Type Equations with Variable Rotational Inertia
DOI: 10.12677/AAM.2025.147354, PDF,   
作者: 卢京鑫:丽江文化旅游学院,云南 丽江;吕鹏辉*:苏州大学应用技术学院,江苏 苏州
关键词: 变系数型Kirchhoff方程变系数旋转惯性整体吸引子Kirchhoff-Type Equation with Variable Coefficients Variable-Coefficient Rotational Inertia Global Attractor
摘要: 本文研究了具变系数旋转惯性的含变系数Kirchhoff型方程的渐近行为的问题,在合理的假设条件 下,利用先验估计、 菜布尼兹公式及经典Galerkin方法,获得了方程整体解的存在唯一性和该类 方程的整体吸引子这一结果,推广了Kirchhoff方程关于整体吸引子的结果。
Abstract: This paper investigates the asymptotic behavior of a variable-coefficient Kirchhoff-type equation with rotational inertia. Under suitable assumptions, we establish the exis- tence and uniqueness of global solutions and prove the existence of a global attractor for the equation by employing a priori estimates, the Leibniz formula, and the classi- cal Galerkin method. These results extend the existing theory of global attractors for Kirchhoff-type equations.
文章引用:卢京鑫, 吕鹏辉. 具有变系数旋转惯性的含变系数Kirchhoff型方程的长时间动力学[J]. 应用数学进展, 2025, 14(7): 158-173. https://doi.org/10.12677/AAM.2025.147354

参考文献

[1] Chueshov, I. (2012) Long-Time Dynamics of Kirchhoff Wave Models with Strong Nonlinear Damping. Journal of Differential Equations, 252, 1229-1262.
https://doi.org/10.1016/j.jde.2011.08.022
[2] Lin, G., Lv, P. and Lou, R. (2017) Exponential Attractors and Inertial Manifolds for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model. Far East Journal of Mathematical Sciences (FJMS), 101, 1913-1945.
https://doi.org/10.17654/ms101091913
[3] Yang, M. and Sun, C. (2009) Attractors for Strongly Damped Wave Equations. Nonlinear Analysis: Real World Applications, 10, 1097-1100.
https://doi.org/10.1016/j.nonrwa.2007.12.001
[4] Pata, V. and Squassina, M. (2004) On the Strongly Damped Wave Equation. Communications in Mathematical Physics, 253, 511-533.
https://doi.org/10.1007/s00220-004-1233-1
[5] Matsuyama, T. and Ruzhansky, M. (2013) Global Well-Posedness of Kirchhoff Systems. Jour- nal de Math´ematiques Pures et Appliqu´ees, 100, 220-240.
https://doi.org/10.1016/j.matpur.2012.12.002
[6] Chueshov, I. and Lasiecka, I. (2008) Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping. American Mathematical Society.
[7] Niimura, T. (2020) Attractors and Their Stability with Respect to Rotational Inertia for Nonlocal Extensible Beam Equations. Discrete & Continuous Dynamical Systems-A, 40, 2561- 2591.
https://doi.org/10.3934/dcds.2020141
[8] Papadopoulos, P.G., Karamolengos, M. and Pappas, A. (2009) Global Existence and Ener- gy Decay for Mildly Degenerate Kirchhoff’s Equations on RN . Journal of Interdisciplinary Mathematics, 12, 767-783.
https://doi.org/10.1080/09720502.2009.10700663
[9] Lv, P., Lin, G. and Lv, X. (2023) Well-Posedness and Global Attractor of Kirchhoff Equation with Memory Term and Thermal Effect. Results in Applied Mathematics, 18, Article 100362.
https://doi.org/10.1016/j.rinam.2023.100362
[10] Lv, P., Lin, G. and Sun, Y. (2022) The Family of Random Attractors for Nonautonomous Stochastic Higher-Order Kirchhoff Equations with Variable Coefficients. Open Mathematics, 20, 63-83.
https://doi.org/10.1515/math-2022-0003
[11] Lv, P. and Lin, G. (2023) Exponential Attractor for Kirchhoff Model with Time Delay and Thermal Effect. Results in Applied Mathematics, 19, Article 100382.
https://doi.org/10.1016/j.rinam.2023.100382
[12] 林国广, 李桌茜. 一类高阶非线性Kirchhoff方程吸引子族及其维数[J]. 山东大学学报(理学版), 2019, 54(12): 1-11.
[13] 林国广, 朱昌清. 一类非线性高阶Kirchhoff型方程解的渐进性态[J]. 云南大学学报(自然科学版), 2019(5): 867-875.