次模性在极小图类结构研究中的应用
Applications of Submodularity in the Structure Analysis of Minimal Graphs
DOI: 10.12677/AAM.2025.147356, PDF,    科研立项经费支持
作者: 李珊珊, 李天钥 :广东财经大学,统计与数据科学学院,广东 广州;张赞波 *:广东财经大学,统计与数据科学学院,广东 广州;广东财经大学,人工智能与深度学习研究所,广东 广州
关键词: 极小 k-可扩二部图极小 k-强连通图次模性最小度Minimally k-Extendable Bipartite Graphs Minimally Strongly k-Connected Graphs Submodularity Minimum Degree
摘要: 本文运用邻域函数的次模性,结合关键集、紧集等概念,构建了一种分析极小图类最小度的统一 方法,并运用该方法证明了极小 k -可扩二部图中必然存在度数为 k+1 的顶点,以及极小强 k- 连通图中必然存在出度数/入度数为 k 的顶点。本研究提出的方法为极小图结构的分析提供了新的 组合论视角,为极小临界图最小度的猜想提供了理论支撑。
Abstract: In this paper, we use the submodularity of neighbourhood functions, combined with the concepts of key set and tight set, to develop a unified method for analysing the minimum degree of minimal graphs, and apply the method to prove the existence of vertices of degree k + 1 in minimally k-extendable bipartite graphs as well as vertices of out-degree or in-degree k in minimally strongly k-connected graphs. The meth- ods proposed in this work provide a new combinatorial perspective for the structure analysis of minimal graphs, and provide theoretical support for the conjecture on the minimum degree of minimal critical graphs.
文章引用:李珊珊, 张赞波, 李天钥. 次模性在极小图类结构研究中的应用[J]. 应用数学进展, 2025, 14(7): 189-196. https://doi.org/10.12677/AAM.2025.147356

参考文献

[1] Plummer, M.D. and Lovász, L. (1986) Matching Theory (Vol. 29). Elsevier.
[2] Plummer, M.D. (1980) On n-Extendable Graphs. Discrete Mathematics, 31, 201-210.
https://doi.org/10.1016/0012-365x(80)90037-0
[3] Favaron, O. (1996) On k-Factor-Critical Graphs. Discussiones Mathematicae Graph Theory, 16, 41-51.
https://doi.org/10.7151/dmgt.1022
[4] Yu, Q. (1993) Characterizations of Various Matching Extensions in Graphs. The Australasian Journal of Combinatorics, 7, 55-64.
[5] Plummer, M.D. (1986) Matching Extension in Bipartite Graphs. Congressus Numerantium, 54, 245-258.
[6] Frank, A. and Jordan, T. (1995) Minimal Edge-Coverings of Pairs of Sets. Journal of Combi- natorial Theory, Series B, 65, 73-110.
https://doi.org/10.1006/jctb.1995.1044
[7] Lou, D. (1999) On the Structure of Minimally n-Extendable Bipartite Graphs. Discrete Math- ematics, 202, 173-181.
https://doi.org/10.1016/s0012-365x(98)00291-x
[8] Mader, W. (2002) On Vertices of Outdegree n in Minimally n‐Connected Digraphs. Journal of Graph Theory, 39, 129-144.
https://doi.org/10.1002/jgt.10018
[9] Favaron, O. and Shi, M. (1998) Minimally k-Factor-Critical Graphs. The Australasian Journal of Combinatorics, 17, 89-97.
[10] Lou, D. and Yu, Q. (2004) Connectivity of k-Extendable Graphs with Large k. Discrete Applied Mathematics, 136, 55-61.
https://doi.org/10.1016/s0166-218x(03)00198-7