次模性在极小图类结构研究中的应用
Applications of Submodularity in the Structure Analysis of Minimal Graphs
摘要: 本文运用邻域函数的次模性,结合关键集、紧集等概念,构建了一种分析极小图类最小度的统一 方法,并运用该方法证明了极小 k -可扩二部图中必然存在度数为 k+1 的顶点,以及极小强 k- 连通图中必然存在出度数/入度数为 k 的顶点。本研究提出的方法为极小图结构的分析提供了新的 组合论视角,为极小临界图最小度的猜想提供了理论支撑。
Abstract: In this paper, we use the submodularity of neighbourhood functions, combined with the concepts of key set and tight set, to develop a unified method for analysing the minimum degree of minimal graphs, and apply the method to prove the existence of vertices of degree k + 1 in minimally k-extendable bipartite graphs as well as vertices of out-degree or in-degree k in minimally strongly k-connected graphs. The meth- ods proposed in this work provide a new combinatorial perspective for the structure analysis of minimal graphs, and provide theoretical support for the conjecture on the minimum degree of minimal critical graphs.
参考文献
[1]
|
Plummer, M.D. and Lovász, L. (1986) Matching Theory (Vol. 29). Elsevier.
|
[2]
|
Plummer, M.D. (1980) On n-Extendable Graphs. Discrete Mathematics, 31, 201-210. https://doi.org/10.1016/0012-365x(80)90037-0
|
[3]
|
Favaron, O. (1996) On k-Factor-Critical Graphs. Discussiones Mathematicae Graph Theory, 16, 41-51. https://doi.org/10.7151/dmgt.1022
|
[4]
|
Yu, Q. (1993) Characterizations of Various Matching Extensions in Graphs. The Australasian Journal of Combinatorics, 7, 55-64.
|
[5]
|
Plummer, M.D. (1986) Matching Extension in Bipartite Graphs. Congressus Numerantium, 54, 245-258.
|
[6]
|
Frank, A. and Jordan, T. (1995) Minimal Edge-Coverings of Pairs of Sets. Journal of Combi- natorial Theory, Series B, 65, 73-110. https://doi.org/10.1006/jctb.1995.1044
|
[7]
|
Lou, D. (1999) On the Structure of Minimally n-Extendable Bipartite Graphs. Discrete Math- ematics, 202, 173-181. https://doi.org/10.1016/s0012-365x(98)00291-x
|
[8]
|
Mader, W. (2002) On Vertices of Outdegree n in Minimally n‐Connected Digraphs. Journal of Graph Theory, 39, 129-144. https://doi.org/10.1002/jgt.10018
|
[9]
|
Favaron, O. and Shi, M. (1998) Minimally k-Factor-Critical Graphs. The Australasian Journal of Combinatorics, 17, 89-97.
|
[10]
|
Lou, D. and Yu, Q. (2004) Connectivity of k-Extendable Graphs with Large k. Discrete Applied Mathematics, 136, 55-61. https://doi.org/10.1016/s0166-218x(03)00198-7
|