学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 15 No. 7 (July 2025)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
小直径匹配整图
Matching Integral Graphs withSmall-Diameter
DOI:
10.12677/PM.2025.157212
,
PDF
,
,
,
被引量
科研立项经费支持
作者:
马仰光
:青海民族大学数学与统计学院,青海 西宁
关键词:
匹配多项式
;
整图
;
路树
;
Matching Polynomial
;
Integral Graphs
;
Path-Trees
摘要:
令G是n个顶点的图。匹配整图表示的是匹配多项式的根都是整数的图。本文运用路树的相关概念,通过将树的一些分支进行路径收缩得到带有圈的匹配整图,利用这种方法构造了一些直径为4,5,6的匹配整图。
Abstract:
Let G be a graph with n vertices. Matching integral graphs are defined as graphs where all roots of the matching polynomial are integers. In this paper, by applying concepts related to path-trees and contracting some branches of a tree into paths, we derive matching integral graphs that contain cycles.Using this approach, we construct several matching integral graphs with diameters 4, 5, and 6.
文章引用:
马仰光. 小直径匹配整图[J]. 理论数学, 2025, 15(7): 99-107.
https://doi.org/10.12677/PM.2025.157212
参考文献
[1]
Hosoya, H. (1971) Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bulletin of the Chemical Society of Japan, 44, 2332-2339.
https://doi.org/10.1246/bcsj.44.2332
[2]
Heilmann, O.J. and Lieb, E.H. (1972) Theory of Monomer-Dimer Systems. Communications in Mathematical Physics, 25, 190-232.
https://doi.org/10.1007/bf01877590
[3]
Farrell, E.J. (1979) An Introduction to Matching Polynomials. Journal of Combinatorial Theory, Series B, 27, 75-86.
https://doi.org/10.1016/0095-8956(79)90070-4
[4]
Godsil, C.D. and Gutman, I. (1981) On the Theory of the Matching Polynomial. Journal of Graph Theory, 5, 137-144.
https://doi.org/10.1002/jgt.3190050203
[5]
Godsil, C.D. (1981) Hermite Polynomials and a Duality Relation for Matchings Polynomials. Combinatorica, 1, 257-262.
https://doi.org/10.1007/bf02579331
[6]
Jerrum, M. (1987) Two-Dimensional Monomer-Dimer Systems Are Computationally Intractable. Journal of Statistical Physics, 48, 121-134.
https://doi.org/10.1007/bf01010403
[7]
Lovasz, L. and Plummer, M. (2009) Matching Theory. American Mathematical Society.
https://doi.org/10.1090/chel/367
[8]
Li, X.L. and Lin, G.N. (1988) On Integral Trees Problems. Chinese Science Bulletin, 33, 802- 806 (In English). (Or Kexue Tongbao (Chinese), Vol. 32 (1987), No. 11, 813-816 (In Chinese))
[9]
Brouwer, A.E. (2008) Small Integral Trees. The Electronic Journal of Combinatorics, 15, Article No. N1.
https://doi.org/10.37236/876
[10]
Wang, L. (2005) Integral Trees and Integral Graphs. PhD Thesis, University of Twente.
投稿
为你推荐
友情链接
科研出版社
开放图书馆