三维简化重力两层半模型解的时空衰减率
Space-Time Decay Rates of Solutions to 3D Reduced Gravity Two-and-a-Half-Layer Model
DOI: 10.12677/AAM.2025.148387, PDF,    科研立项经费支持
作者: 陈雨昂:重庆对外经贸学院数学与计算机科学学院,重庆
关键词: 时空衰减率海洋流体力学纳维-斯托克斯方程Space-Time Decay Rates Naval Hydrodynamics Navier-Stokes Equations
摘要: 本文研究了简化重力两层半模型解的时空衰减率。基于之前的时间衰减结果,我们正确地使用精 细的加权能量估计和插值技巧来获得加权Sobolev空间中解的k(∈[0,2])阶空间导数的时空衰减率。
Abstract: In this paper, we study space-time decay ratess of the solutions to 3D reduced gravity two-and-a-half-layer model in the whole space. Based on the previous temporal decay results, we properly use delicate weighted energy estimates and interpolation tricks to obtain the space-time decay rates of the k(€ [0,3])–th order spatial derivative of solutions in the weighted Sobolev space.
文章引用:陈雨昂. 三维简化重力两层半模型解的时空衰减率[J]. 应用数学进展, 2025, 14(8): 246-260. https://doi.org/10.12677/AAM.2025.148387

参考文献

[1] Duan, R. and Zhou, C. (2012) On the Compactness of the Reduced-Gravity Two-and-a-Half Layer Equations. Journal of Differential Equations, 252, 3506-3519.
https://doi.org/10.1016/j.jde.2011.12.012
[2] Zhu, M., Wang, W. and Yao, L. (2022) Optimal Decay Rate to 3D Reduced Gravity Two-anda-Half-Layer Model. Zeitschrift für angewandte Mathematik und Physik, 73, Article No. 176.
https://doi.org/10.1007/s00033-022-01814-9
[3] Bae, H. and Jin, B.J. (2005) Temporal and Spatial Decays for the Navier-Stokes Equations.Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 135, 461-478.
https://doi.org/10.1017/s0308210500003966
[4] Chen, Y., Luo, Z. and Zhang, Y. (2024) Space-Time Decay Rate for Strong Solutions to the Viscous Liquid-Gas Two-Phase Flow with Magnetic Field. Annales Polonici Mathematici, 132, 109-135.
https://doi.org/10.4064/ap230625-14-12
[5] Kukavica, I. (2001) Space-Time Decay for Solutions of the Navier-Stokes Equations. Indiana University Mathematics Journal, 50, 205-222.
https://doi.org/10.1512/iumj.2001.50.2084
[6] Kukavica, I. (2009) On the Weighted Decay for Solutions of the Navier-Stokes System. Non-linear Analysis: Theory, Methods Applications, 70, 2466-2470.
https://doi.org/10.1016/j.na.2008.03.031
[7] Kukavica, I. and Torres, J.J. (2005) Weighted Bounds for the Velocity and the Vorticity for the Navier-Stokes Equations. Nonlinearity, 19, 293-303.
https://doi.org/10.1088/0951-7715/19/2/003
[8] Kukavica, I. and Torres, J.J. (2007) Weighted LP-Decay for Solutions of the Navier-Stokes Equations. Communications in Partial Differential Equations, 32, 819-831.
https://doi.org/10.1080/03605300600781659
[9] Luo, Z., Ye, Q. and Zhang, Y. (2022) Space-Time Decay Rate for the Two-Phase Flow Model.Zeitschrift für angewandte Mathematik und Physik, 73, Article No. 254.
https://doi.org/10.1007/s00033-022-01884-9
[10] Luo, Z. and Zhang, Y. (2022) Optimal Large-Time Behavior of Solutions to the Full Compressible Navier-Stokes Equations with Large Initial Data. Journal of Evolution Equations, 22, Article No. 83.
https://doi.org/10.1007/s00028-022-00841-3
[11] Nirenberg, L. (1959) On Elliptic Partial Differential Equations. Annali della Scuola Normale Superiore di Pisa, 13, 115-162.
[12] Chen, Y., Luo, Z. and Zhang, Y. (2024) Space-Time Decay Rates for the 3D Full Compressible MHD Equations. Discrete and Continuous Dynamical Systems—B, 29, 245-281.
https://doi.org/10.3934/dedsb.2023095
[13] Chen, Y., Luo, Z. and Zhang, Y. (2024) Space-Time Decay Rate for Strong Solutions to the Viscous Liquid-Gas Two-Phase Flow with Magnetic Field. Annales Polonici Mathematici, 132, 109-135.
https://doi.org/10.4064/ap230625-14-12