一类次线性算子在主极大变指标 Herz-Morrey-Hardy空间上的有界性
Boundedness of a Class of Sublinear Operators on Grand Herz-Morrey-Hardy Spaces with Variable Exponents
DOI: 10.12677/AAM.2025.148388, PDF,    国家自然科学基金支持
作者: 范洋:西北师范大学数学与统计学院,甘肃兰州
关键词: 主极大Herz-Morrey-Hardy空间原子分解次线性算子Grand Herz-Morrey-Hardy Spaces Atomic Decomposition Sublinear Operators
摘要: 利用主极大变指标Herz-Morrey-Hardy空间的原子分解,证明了一类次线性算子在主极大变指 标Herz-Morrey-Hardy 空间上的有界性。
Abstract: Using the atomic decomposition of grand Herz-Morrey-Hardy spaces with variable exponents, the boundedness of a class of sublinear operators on grand Herz-MorreyHardy spaces with variable exponents is proved.
文章引用:范洋. 一类次线性算子在主极大变指标 Herz-Morrey-Hardy空间上的有界性[J]. 应用数学进展, 2025, 14(8): 261-275. https://doi.org/10.12677/AAM.2025.148388

参考文献

[1] Kovácik, O. and Rákosník, J. (1991) On Spaces LP(=) and Wk,p(z). Czechoslovak Mathematical Journal,41, 592-618. [Google Scholar] [CrossRef
[2] Almeida, A., Hasanov, J. and Samko, S. (2008) Maximal and Potential Operators in Variable Exponent Morrey Spaces. Georgian Mathematical Journal, 15, 195-208. [Google Scholar] [CrossRef
[3] Izuki, M. (2009) Herz and Amalgam Spaces with Variable Exponent, the Haar Wavelets and Greediness of the Wavelet System. East Journal on Approrimations, 15, 87-109.
[4] Izuki, M. (2010) Boundedness of Sublinear Operators on Herz Spaces with Variable Exponent and Application to Wavelet Characterization. Analysis Mathematica, 36, 33-50. [Google Scholar] [CrossRef
[5] Almeida, A. and Drihem, D. (2012) Maximal, Potential and Singular Type Operators on Herz Spaces with Variable Exponents. Journal of Mathematical Analysis and Applications, 394, 781-795. [Google Scholar] [CrossRef
[6] Samko, S. (2013) Variable Exponent Herz Spaces. Mediterranean Journal of Mathematics, 10, 2007-2025. [Google Scholar] [CrossRef
[7] Yu, X. and Liu, Z. (2021) Boundedness of Some Integral Operators and Commutators on Homogeneous Herz Spaces with Three Variable Exponents. Frontiers of Mathematics in China, 16, 211-237. [Google Scholar] [CrossRef
[8] Yu, X. and Liu, Z.G. (2021) Boundedness of Marcinkiewicz Integrals with Variable Kernel on Homogeneous Herz Spaces with Variable Exponents. Advances in Mathematics (China), 50, 581-592.
[9] Nakai, E. and Sawano, Y. (2012) Hardy Spaces with Variable Exponents and Generalized Campanato Spaces. Journal of Functional Analysis, 262, 3665-3748. [Google Scholar] [CrossRef
[10] Izuki, M. (2009) Boundedness of Vector-Valued Sublinear Operators on Herz-Morrey Spaces with Variable Exponent. Mathematical Sciences Research Journal, 13, 243-253.
[11] Wang, H. and Liu, Z. (2012) The Herz-Type Hardy Spaces with Variable Exponent and Their Applications.Taiwanese Journal of Mathematics, 16, 1363-1389. [Google Scholar] [CrossRef
[12] Xu, J. and Yang, X. (2015) Herz-Morrey-Hardy Spaces with Variable Exponents and Their Applications.Journal of Function Spaces, 2015, Article ID: 160635. [Google Scholar] [CrossRef
[13] Kokilashvili, V. and Meskhi, A. (2013) Integral Operators in Grand Variable Lebesgue Spaces. Proceedings of A. Razmadze Mathematical Institute, 162, 144-150.
[14] Kiguradze, I. and Kiguradze, T. (2011) Conditions for the Well-Posedness of Nonlocal Problems for Higher Order Linear Differential Equations with Singularities. Georgian Mathematical Journal, 18, 735-760. [Google Scholar] [CrossRef
[15] Nafis, H., Rafeiro, H. and Zaighum, M.A. (2020) A Note on the Boundedness of Sublinear Operators on Grand Variable Herz Spaces. Journal of Inequalities and Applications, 2020, 1-13. [Google Scholar] [CrossRef
[16] Nafis, H., Rafeiro, H. and Zaighum, M.A. (2022) Boundedness of Multilinear Calderón-Zygmund Operators on Grand Variable Herz Spaces. Journal of Function Spaces, 2022, Article ID: 4845507. [Google Scholar] [CrossRef
[17] Nafis, H., Rafeiro, H. and Zaighum, M.A. (2021) Boundedness of the Marcinkiewicz Integral on Grand Variable Herz Spaces. Journal of Mathenatical Inequalities, 15, 739-753. [Google Scholar] [CrossRef
[18] Wang, L. (2022) Parametrized Littlewood-Paley Operators on Grand Variable Herz Spaces. Annals of Functional Analysis, 13, 1-26. [Google Scholar] [CrossRef
[19] Xiao, D. and Shu, L.S. (2023) The Boundedness of Marcinkiewicz Integrals on Grand Variable Herz Spaces.Analysis in Theory and Applications, 39, 163-177. [Google Scholar] [CrossRef
[20] Sultan, M., Sultan, B., Aloqaily, A. and Mlaiki, N. (2023) Boundedness of Some Operators on Grand Herz Spaces with Variable Exponent. AIMS Mathematics, 8, 12964-12985. [Google Scholar] [CrossRef
[21] Sultan, B., Sultan, M., Khan, A. and Abdeljawad, T. (2024) Boundedness of Commutators of Variable Marcinkiewicz Fractional Integral Operator in Grand Variable Herz Spaces. Journal of Inequalities and Applications, 2024, Article ID: 4772000. [Google Scholar] [CrossRef
[22] Sultan, M., Sultan, B. and Hussain, A. (2023) Grand Herz-Morrey Spaces with Variable Exponent. Mathematical Notes, 114, 957-977. [Google Scholar] [CrossRef
[23] Shabbir, F. and Zaighum, M.A. (2024) On the Boundedness of Sublinear Operators on Grand Herz-Hardy Spaces with Variable Exponent. Mediterranean Journal of Mathematics, 21, 1-20. [Google Scholar] [CrossRef
[24] Sawano, Y. (2013) Atomic Decompositions of Hardy Spaces with Variable Exponents and Its Application to Bounded Linear Operators. Integral Equations and Operator Theory, 77, 123-148. [Google Scholar] [CrossRef
[25] Ho, K. (2015) Atomic Decomposition of Hardy-Morrey Spaces with Variable Exponents. Annales Academiae Scientiarum Fennicae Mathematica, 40, 31-62. [Google Scholar] [CrossRef
[26] Heraiz, R. (2021) Variable Herz Estimates for Fractional Integral Operators. Ukrainian Mathematical Jour-nal, 72, 1197-1211. [Google Scholar] [CrossRef
[27] Yao, D.M. and Zhao, K. (2023) Variable Exponent Herz-Morrey-Hardy Spaces Characterized by Wavelets and Its Application. Analysis in Theory and Applications, 39, 385-406. [Google Scholar] [CrossRef
[28] Diening, L., Harjulehto, P., Hästö, P. and Ruzicka, M. (2011) Lebesgue and Sobolev Spaces with Variable Exponents. Springer.
[29] Lu, S.Z., Yang, D.C. and Hu, G.E. (2008) Herz Type Spaces and Their Applications. Science Press.