|
[1]
|
K. Barakat, M. Gajewski and J. A. Tuszynski. DNA repair inhibitors: The next major step to improve cancer therapy. Current Topics in Medicinal Chemistry, 2012, 12(12): 1376- 1390.
|
|
[2]
|
M. O. Sommer, G. Dantas. Antibiotics and the resistant micro- biome. Current Opinion in Microbiology, 2011, 14(5): 556-563.
|
|
[3]
|
P. C. Appelbaum. 2012 and beyond: Potential for the start of a second pre-antibiotic era? Journal of Antimicrobial Chemothera- py, 2012, 67(9): 2062-2068.
|
|
[4]
|
R. Nowak. Hungary sees an improvement in penicillin resistance. Science, 1994, 264: 364.
|
|
[5]
|
D. N. Gerding, T. A. Larson, R. A. Hughes, M. Weiler, C. Shan- holtzer and L. R. Peterson. Aminoglycoside resistance and ami- noglycoside usage: Ten years of experience in one hospital. Antimicrobial Agents and Chemotherapy, 1991, 35: 1284-1290.
|
|
[6]
|
N. Han, D. Sheng and H. Xu. Role of Escherichia coli strain subgroups, integrons, and integron-associated gene cassettes in dissemination of antimicrobial resistance in aquatic environ- ments of Jinan, China. Water Science and Technology, 2012, 66 (11): 2385-2392.
|
|
[7]
|
K. Hegstad, S. Langsrud, B. T. Lunestad, A. Scheie, M. Sunde and S. P. Yazdankhah. Does the wide use of quaternary ammo- nium compounds enhance the selection and spread of antimic- robial resistance and thus threaten our health? Microbial Drug Resistance, 2010, 16(2): 91-104.
|
|
[8]
|
L. Ma, X. Zhang, S. Cheng, Z. Zhang, .P Shi, B. Liu, B. Wu and Y. Zhang. Occurrence, abundance and elimination of class 1 integrons in one municipal sewage treatment plant. Ecotoxico- logy, 2011, 20(5): 968-973.
|
|
[9]
|
M. A. Kohanski, D. J. Dwyer and J. J. Collins. How antibiotics kill bacteria: From targets to networks. Nature Reviews Micro- biology, 2010, 8(6): 423-435.
|
|
[10]
|
M. A. Kohanski, D. J. Dwyer and B. Hayete. A common mecha- nism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5): 797-810.
|
|
[11]
|
P. Belenky, J. J. Collins. Antioxidant strategies to tolerate anti- biotics. Science, 2011, 334(6058): 915-916.
|
|
[12]
|
Z. Baharoglu, D. Mazel. Vibrio cholerae triggers SOS and muta- genesis in response to a wide range of antibiotics: A route to- wards multiresistance. Antimicrobial Agents and Chemotherapy, 2011, 55(5): 2438-2441.
|
|
[13]
|
V. Sharma, Y. Sakai, K. A. Smythe and Y. Yokobayashi. Knock- down of recA gene expression by artificial small RNAs in Es- cherichia coli. Biochemical and Biophysical Research Com- munications, 2013, 430(1): 256-259.
|
|
[14]
|
I. Erill, S. Campoy and J. Barbé. Aeons of distress: An evo- lutionary perspective on the bacterial SOS response. FEMS Microbiology Reviews, 2007, 31(6): 637-656.
|
|
[15]
|
C. Miller, L. E. Thomsen, C. Gaggero, R. Mosseri, H. Ingmer and S. N. Cohen. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science, 2004, 305: 1629-1631.
|
|
[16]
|
A. Balandina, L. Claret, R. Hengge-Aronis and J. Rouviere- Yaniv. The Escherichia coli histone-like protein HU regulates rpoS translation. Molecular Microbiology, 2011, 39: 1069-1079.
|
|
[17]
|
O. Preobrajenskaya, A. Boullard, F. Boubrik, M. Schnarr and J. Rouviere-Yaniv. The protein HU can displace the LexA repress- sor from its DNA-binding sites. Molecular Microbiology, 1994, 13: 459-467.
|
|
[18]
|
B. R. Levin. Microbiology. Noninherited resistance to antibiotics. Science, 2004, 305(5690): 1578-1579.
|
|
[19]
|
T. Dorr, K. Lewis and M. Vulić. SOS response induces persis- tence to fluoroquinolones in Escherichia coli. PLoS Genetics, 2009, 5(12): Article ID: e1000760.
|
|
[20]
|
V. M. D’Costa, C. E. King and L. Kalan. Antibiotic resistance is ancient. Nature, 2011, 477(7365): 457-461.
|
|
[21]
|
A, Giedraitiene, A.Vitkauskiene and R. Naginiene. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas), 2011, 47(3): 137-146.
|
|
[22]
|
A. Jolivet-Gougeon, B. Kovacs and S. Le Gall-David. Bacterial hypermutation: Clinical implications. Journal of Medical Micro- biology, 2011, 60(Pt 5): 563-573.
|
|
[23]
|
T. D. Tran, H. Y. Kwon and E. H. Kim. Decrease in penicillin susceptibility due to heat shock protein ClpL in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2011, 55(6): 2714-2728.
|
|
[24]
|
J. Aranda. Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. Journal of Bacteriology, 2011, 193(15): 3740- 3747.
|
|
[25]
|
T. J. Wigle, S. F. Singleton. Directed molecular screening for RecA ATPase inhibitors. Bioorganic & Medicinal Chemistry Letters, 2007, 17: 3249-3253.
|
|
[26]
|
J. A. Imlay, S. Linn. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. Journal of Bacteri- ology, 1987, 169: 2967-2976.
|
|
[27]
|
T. Mori, T. Nakamura, N. Okazaki, A. Furukohri, H. Maki and M. T. Akiyama. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response. Genes and Genetic Systems, 2012, 87(2): 75-87.
|
|
[28]
|
E. Lopez, J. Blazquez. Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2009, 53(8): 3411-3415.
|
|
[29]
|
R. Singh, K. R. Ledesma, K. Chang and V. H. Tam. Impact of recA on levofloxacin exposure-related resistance development. Antimicrobial Agents and Chemotherapy, 2010, 54(10): 4262- 4268.
|
|
[30]
|
J. Hare, J. Bradley and C. Lin. Diverse DNA damage responses in Acinetobacter include the capacity for DNA damage-induced mutagenesis in the opportunistic pathogens Acinetobacter bau- mannii and Acinetobacter ursingii. Microbiology, 2011, 158(Pt 3): 601-611.
|
|
[31]
|
R. Jayaraman. Antibiotic resistance: An overview of mecha- nisms and a paradigm shift. Current Science, 2009, 96(11): 1475-1484.
|
|
[32]
|
B. Hall, M. Barlow. Evolution of the serine β-lactamases: Past, present and future. Drug Resistance Updates, 2004, 7: 111-123.
|