耦合磁场的可压缩Navier-Stokes-Poisson方程组的弱强唯一性
Weak-Strong Uniqueness for the Compressible Navier-Stokes-Poisson System Coupled with Magnetic Fields
DOI: 10.12677/ijfd.2025.133013, PDF,    科研立项经费支持
作者: 李昊彬*, 杨建伟:华北水利水电大学数学与统计学院,河南 郑州
关键词: 弱强唯一性磁流体动力学Navier-Stokes-Poisson方程组相对熵方法Weak-Strong Uniqueness Magnetohydrodynamics Navier-Stokes-Poisson Equations Relative Entropy
摘要: 本文研究耦合磁场的可压缩Navier-Stokes-Poisson方程组的弱强唯一性问题。证明了当绝热指数γ∈[12/7,6]时,系统的耗散弱解与从相同初值出发的强解完全一致。
Abstract: This paper studies the weak-strong uniqueness problem for the magnetically coupled compressible Navier-Stokes-Poisson system. It is proven that when the adiabatic index γ∈[12/7,6] any dissipative weak solution of the system coincides completely with the strong solution emanating from the same initial data.
文章引用:李昊彬, 杨建伟. 耦合磁场的可压缩Navier-Stokes-Poisson方程组的弱强唯一性[J]. 流体动力学, 2025, 13(3): 136-148. https://doi.org/10.12677/ijfd.2025.133013

参考文献

[1] Federbush, P., Luo, T. and Smoller, J. (2014) Existence of Magnetic Compressible Fluid Stars. Archive for Rational Mechanics and Analysis, 215, 611-631. https://doi.org/10.1007/s00205-014-0790-5
[2] Hong, G., Hou, X., Peng, H. and Zhu, C. (2017) Global Existence for a Class of Large Solutions to Three-Dimensional Compressible Magnetohydrodynamic Equations with Vacuum. SIAM Journal on Mathematical Analysis, 49, 2409-2441. https://doi.org/10.1137/16m1100447
[3] Hu, X. and Wang, D. (2010) Global Existence and Large-Time Behavior of Solutions to the Three-Dimensional Equations of Compressible Magnetohydrodynamic Flows. Archive for Ra- tional Mechanics and Analysis, 197, 203-238. https://doi.org/10.1007/s00205-010-0295-9
[4] Suen, A. and Hoff, D. (2012) Global Low-Energy Weak Solutions of the Equations of Three- Dimensional Compressible Magnetohydrodynamics. Archive for Rational Mechanics and Anal- ysis, 205, 27-58. https://doi.org/10.1007/s00205-012-0498-3
[5] Li, H., Xu, X. and Zhang, J. (2013) Global Classical Solutions to 3D Compressible Magnetohy- drodynamic Equations with Large Oscillations and Vacuum. SIAM Journal on Mathematical Analysis, 45, 1356-1387. https://doi.org/10.1137/120893355
[6] Yang, Y., Dou, C. and Ju, Q. (2013) Weak-Strong Uniqueness Property for the Magnetohydro- dynamic Equations of Three-Dimensional Compressible Isentropic Flows. Nonlinear Analysis: Theory, Methods & Applications, 85, 23-30. https://doi.org/10.1016/j.na.2013.02.015
[7] Tan, Z. and Zhang, Y.H. (2010) Strong Solutions of the Coupled Navier-Stokes-Poisson Equa- tions for Isentropic Compressible Fluids. Acta Mathematica Scientia, 30, 1280-1290. https://doi.org/10.1016/s0252-9602(10)60124-5
[8] Zhang, G., Li, H. and Zhu, C. (2011) Optimal Decay Rate of the Non-Isentropic Compressible Navier-Stokes-Poisson System in R3. Journal of Differential Equations, 250, 866-891. https://doi.org/10.1016/j.jde.2010.07.035
[9] Shi, W. and Xu, J. (2019) A Sharp Time-Weighted Inequality for the Compressible Navier- Stokes-Poisson System in the Critical Lp Framework. Journal of Differential Equations, 266, 6426-6458. https://doi.org/10.1016/j.jde.2018.11.005
[10] Zhang, Y. and Tan, Z. (2006) On the Existence of Solutions to the Navier-Stokes-Poisson Equations of a TwoCompressible Flow. Mathematical Methods in the Applied Sciences, 30, 305-329. https://doi.org/10.1002/mma.786
[11] He, L. and Tan, Z. (2020) Weak-Strong Uniqueness for the Navier-Stokes-Poisson Equations. Applied Mathematics Letters, 103, 106143. https://doi.org/10.1016/j.aml.2019.106143
[12] Basari´c, D. (2022) Weak-Strong Uniqueness Principle for Compressible Barotropic Self- Gravitating Fluids. Journal of Mathematical Analysis and Applications, 508, Article 125926. https://doi.org/10.1016/j.jmaa.2021.125926
[13] Feireisl, E., Lu, Y. and Novotny´, A. (2018) Weak-Strong Uniqueness for the Compressible Navier-Stokes Equations with a Hard-Sphere Pressure Law. Science China Mathematics, 61, 2003-2016. https://doi.org/10.1007/s11425-017-9272-7