|
[1]
|
S. McDonald, K. Nogita, J. Read, et al. Influence of composition on the morphology of primary Cu6Sn5 in Sn-4Cu alloys. Journal of Electronic Materials, 2013, 42(2): 256-262.
|
|
[2]
|
L. R. Garcia, W. R. Osorio and A. Garcia. The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Materials & Design, 2011, 32(5): 3008-3012.
|
|
[3]
|
P. R. tenWolde, M. J. RuizMontero and D. Frenkel. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. The Journal of Chemical Physics, 1996, 104(24): 9932-9947.
|
|
[4]
|
N. Iqbal, N. H. Van Dijk, S. E. Offerman, et al. Real-time observation of grain nucleation and growth during solidification of aluminium alloys. Acta Materialia, 2005, 53(10): 2875-2880.
|
|
[5]
|
L. Qi, L. F. Dong, S. L. Zhang, et al. Glass formation and local structure evolution in rapidly cooled Pd55Ni45 alloy melt: Molecular dynamics simulation. Computational Materials Science, 2008, 42(4): 713-716.
|
|
[6]
|
J. Liu, J. Z. Zhao, Z. Q. Hu. MD study of the glass transition in binary liquid metals: Ni6Cu4 and Ag6Cu4. Intermetallics. 2007, 15(10): 1361-1366.
|
|
[7]
|
S. H. Kim, T. H. Kim, J. W. Bae, et al. Thermal stability of AgxCu1-x alloys and Pt capping layers for GaN vertical light emitting diodes. Thin Solid Films, 2012, 521: 54-59.
|
|
[8]
|
K. Shin, D. H. Kim, S. C. Yeo, et al. Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: A DFT study. Catalysis Today, 2012, 185(1): 94-98.
|
|
[9]
|
J. J. Morrier, G. Suchett-Kaye, D. Nguyen, et al. Antimicrobial activity of amalgams, alloys and their elements and phases. Dental Materials, 1998, 14(2): 150-157.
|
|
[10]
|
S. Takayama. Amorphous structures and their formation and stability. Journal of Materials Science. 1976, 11(1): 164-185.
|
|
[11]
|
W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695-1697.
|
|
[12]
|
W. G. Hoover. Constant-pressure equations of motion. Physical Review A, 1986, 34(3): 2499-2500.
|
|
[13]
|
L. Verlet. Computer “Experiments” on Classical Fluids. I. Ther- modynamical Properties of Lennard-Jones Molecules. Physical Review, 1967, 159(1): 98-103.
|
|
[14]
|
M. S. Daw, M. I. Baskes. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review Letters, 1983, 50(17): 1285-1288.
|
|
[15]
|
M. S. Daw, M. I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29(12): 6443-6453.
|
|
[16]
|
X. W. Zhou, H. N. G. Wadley, R. A. Johnson, et al. Atomic scale structure of sputtered metal multilayers. Acta Mater, 2001, 49(19): 4005-4015.
|
|
[17]
|
J. D. Honeycutt, H. C. Andersen. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. The journal of physical chemistry, 1987, 91(19): 4950-4963.
|
|
[18]
|
H. Tsuzuki, P. S. Branicio, J. P. Rino. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Computer Physics Communications, 2007, 177(6): 518- 523.
|