基于局部特征增强的多尺度注意力机制的图像去模糊
Locally Enhanced Attention with Multi-Stage Architecture for Image Deblurring
摘要: 图像去模糊是计算机领域不可忽略的任务,其目的是为了从模糊图像中恢复更清晰的图像,从而保证在或许下游任务进行更高效的效果。基于深度学习的传统方法在图像信息恢复和边缘信息保留上效果有待提升,最近诸多研究将注意力机制融合进图像去模糊领域提升效果,但注意力有效特征提取和特征融合方面的效率有待提升,本文设计了局部增强注意力并结合多尺度架构进行图像去模糊,同时本文考虑对 rgba 多通道图像进行模型训练,保证边缘信息的有效提取。与传统深度学习方法相比提升了图像去模糊的效果。
Abstract: Image deblurring is a significant task in the computer vision field, aiming to recover sharper images from blurry inputs, thereby enhancing the effectiveness of downstream tasks. Traditional deep learning methods exhibit limitations in restoring image details and preserving edge information. Recent research has incorporated attention mecha- nisms to improve performance in image deblurring; however, the efficiency of attention mechanisms in extracting effective features and fusing them remains suboptimal. To address these challenges, this paper proposes a novel Locally Enhanced Attention mechanism integrated within a multi-stage architecture for image deblurring. Fur- thermore, the model is specifically designed to train on RGBA multi-channel images, ensuring the effective extraction of edge details. Experimental results demonstrate that the proposed approach significantly improves deblurring performance compared to traditional deep learning methods.
文章引用:李秋良, 姑丽加玛丽 •麦麦提艾力. 基于局部特征增强的多尺度注意力机制的图像去模糊[J]. 人工智能与机器人研究, 2025, 14(5): 1230-1246. https://doi.org/10.12677/AIRR.2025.145116

参考文献

[1] Li, C.M. (2022) A Survey on Image Deblurring. arXiv:2202.07456
[2] 胡雪, 黄成泉, 冯润, 周丽华, 郑兰. 全变分极端通道先验的盲图像去噪去模糊 [J]. 数据采集与处理, 2022, 37(3): 643-656.
[3] 李俭兵, 马忍, 李丹阳, 杨雄. 基于 Tikhonov 和全变分正则化混合约束盲去模糊方法 [J]. 南京邮电大学学报 (自然科学版), 2016, 36(3): 68-73.
[4] Gamini, S., Gudla, V.V. and Bindu, C.H. (2022) Fractional-Order Diffusion Based Image Denoising Model. International Journal of Electrical and Electronics Research, 10, 837-842. [Google Scholar] [CrossRef
[5] 杨竹青, 谢宏. 基于振铃约束的全变差正则化图像去模糊算法 [J]. 太赫兹科学与电子信息学报, 2021, 19(3): 490-496.
[6] 刘亚男, 杨晓梅, 陈超楠. 基于分数阶全变分正则化的超分辨率图像重建 [J]. 计算机科学, 2016, 43(5): 274-278307.
[7] 罗广利, 杨晓梅. 结合全变差和分数阶全变差模型的图像去模糊 [J]. 计算机工程与设计, 2016, 37(7): 1857-1861, 1866.
[8] 杨晓梅, 向雨晴, 刘亚男, 郑秀娟. 基于分数阶全变差和自适应正则化参数的图像去模糊 [J]. 工程科学与技术, 2018, 50(6): 205-211.
[9] 蔡志丹, 方明, 李喆, 许佳路. 基于高斯曲率和加权图总变分正则化的遥感图像盲去模糊算法
[10] [J]. 吉林大学学报 (工学版), 2023, 53(9):2649-2658.
[11] Biyouki, S.A. and Hwangbo, H. (2023) A Comprehensive Survey on Deep Neural Image De- blurring. arXiv:2310.04719.
[12] 王珮, 朱宇, 闫庆森, 孙瑾秋, 张艳宁. 真实场景图像去模糊: 挑战与展望 [J]. 中国图象图形学报, 2024, 29(12): 3501-3528.
[13] Lin, T.Y., Dollar, P., Girshick, R., et al. (2017) Feature Pyramid Networks for Object Detec- tion. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
[14] HI, 21-26 July 2017, 936-944.[CrossRef
[15] 史健锋, 高志明, 王阿川. 结合 ASPP 与改进 HRNET 的多尺度图像语义分割方法研究 [J]. 液晶与显示, 2021, 36(11): 1497-1505.
[16] Zhang, H., Dai, Y., Li, H. and Koniusz, P. (2019) Deep Stacked Hierarchical Multi-Patch Network for Image Deblurring. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Beach, CA, 15-20 June 2019, 5971-5979. [Google Scholar] [CrossRef
[17] Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M., et al. (2021) Multi-Stage Progressive Image Restoration. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, 20-25 June 2021, 14816-14826. [Google Scholar] [CrossRef
[18] Zhang, K., Ren, W., Luo, W., Lai, W., Stenger, B., Yang, M., et al. (2022) Deep Image Deblurring: A Survey. International Journal of Computer Vision, 130, 2103-2130. [Google Scholar] [CrossRef
[19] Perona, P. and Malik, J. (1990) Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629-639. [Google Scholar] [CrossRef
[20] Vese, L.A. and Le Guyader, C. (2016) Variational Methods in Image Processing. CRC Press.
[21] Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W. and Ko, S.J. (2021) Rethinking Coarse-to-Fine Approach in Single Image Deblurring. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, 10-17 October 2021, 4641-4650. [Google Scholar] [CrossRef
[22] He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 27-30 June 2016, 770-778. [Google Scholar] [CrossRef
[23] Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D. and Matas, J. (2018) DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 18-23 June 2018, 8183-8192. [Google Scholar] [CrossRef
[24] Kupyn, O., Martyniuk, T., Wu, J. and Wang, Z. (2019) DeblurGAN-v2: Deblurring (Orders- of-Magnitude) Faster and Better. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 8877-8886. [Google Scholar] [CrossRef
[25] Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., et al. (2020) Deblurring by Realistic Blurring. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 13-19 June 2020, 2734-2743. [Google Scholar] [CrossRef
[26] Shao, W., Liu, Y., Ye, L., Wang, L., Ge, Q., Bao, B., et al. (2020) DeblurGAN+: Revisiting Blind Motion Deblurring Using Conditional Adversarial Networks. Signal Processing, 168,
[27] Article 107338.[CrossRef
[28] Shen, Z., Wang, W., Lu, X., Shen, J., Ling, H., Xu, T., et al. (2019) Human-Aware Motion Deblurring. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 5571-5580. [Google Scholar] [CrossRef
[29] Lumentut, J.S., Santoso, J. and Park, I.K. (2021) Human Motion Deblurring Using Localized Body Prior. In: Ishikawa, H., Liu, CL., Pajdla, T. and Shi, J., Eds., Lecture Notes in Computer Science, Springer International Publishing, 320-335.
[30] [CrossRef
[31] Yang, D. and Yamac, M. (2022) Motion Aware Double Attention Network for Dynamic Scene Deblurring. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Work- shops (CVPRW), New Orleans, LA, 19-20 June 2022, 1112-1122. [Google Scholar] [CrossRef