[1]
|
Bertsimas, D. and Lo, A.W. (1998) Optimal Control of Execution Costs. Journal of Financial Markets, 1, 1-50. [Google Scholar] [CrossRef]
|
[2]
|
Almgren, R. and Chriss, N. (2001) Optimal Execution of Portfolio Transactions. The Journal of Risk, 3, 5-39. [Google Scholar] [CrossRef]
|
[3]
|
Nevmyvaka, Y., Feng, Y. and Kearns, M. (2006) Reinforcement Learning for Optimized Trade Execution. Proceedings of the 23rd International Conference on Machine learning-ICML’06,
|
[4]
|
Pittsburgh, 25-29 June 2006, 673-68.[CrossRef]
|
[5]
|
Hendricks, D. and Wilcox, D. (2014) A Reinforcement Learning Extension to the Almgren- Chriss Framework for Optimal Trade Execution. 2014 IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr), London, 27-28 March 2014, 457- 464. [Google Scholar] [CrossRef]
|
[6]
|
Ning, B., Lin, F.H.T. and Jaimungal, S. (2021) Double Deep Q-Learning for Optimal Execu- tion. Applied Mathematical Finance, 28, 361-380. [Google Scholar] [CrossRef]
|
[7]
|
Biais, B., Hillion, P. and Spatt, C. (1995) An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse. The Journal of Finance, 50, 1655-1689. [Google Scholar] [CrossRef]
|
[8]
|
Ahn, H., Bae, K. and Chan, K. (2001) Limit Orders, Depth, and Volatility: Evidence from the Stock Exchange of Hong Kong. The Journal of Finance, 56, 767-788. [Google Scholar] [CrossRef]
|
[9]
|
Ma, G., Siu, C.C., Zhu, S. and Elliott, R.J. (2020) Optimal Portfolio Execution Problem with Stochastic Price Impact. Automatica, 112, Article 108739. [Google Scholar] [CrossRef]
|
[10]
|
Jin, Z., Yin, G. and Wu, F. (2013) Optimal Reinsurance Strategies in Regime-Switching Jump Diffusion Models: Stochastic Differential Game Formulation and Numerical Methods. Insur- ance: Mathematics and Economics, 53, 733-746. [Google Scholar] [CrossRef]
|
[11]
|
Macrì, A. and Lillo, F. (2024) Reinforcement Learning for Optimal Execution When Liquidity Is Time-Varying. Applied Mathematical Finance, 31, 312-342. [Google Scholar] [CrossRef]
|