具有恐惧效应的Filippov害虫-天敌模型的全局动力学
The Global Dynamics of the Filippov Pest-Natural Enemy Model with Fear Effect
DOI: 10.12677/AAM.2025.1410424, PDF,   
作者: 李土英:长沙理工大学数学与统计学院, 湖南 长沙;长沙理工大学工程数学建模与分析湖南省重点实验室, 湖南 长沙
关键词: Filippov系统恐惧效应平衡点全局稳定性Filippov System Fear Effect Equilibrium Global Stability
摘要: 本文研究了一类具有恐惧效应的 Filippov 害虫-天敌模型, 应用 Filippov 方法研究了该模型的滑 模动力学, 并进一步研究了该模型的全局动力学, 证明了系统存在唯一的正平衡点, 且该平衡点是 全局渐近稳定的. 结果表明, 适当程度的恐惧效应能有效地把害虫数量控制阁值范围内, 避免害虫 数量爆发.
Abstract: In this paper, we investigate a class of Filippov pest-natural enemy model incorpo- rating a fear effect. The sliding mode dynamics of this model are studied using the Filippov approach, and further research is conducted on its global dynamics. It is proven that the system has a unique positive equilibrium, which is globally asymptot- ically stable. The results show that an appropriate degree of fear effect can effectively keep the number of pests within the control threshold and prevent the outbreak of pests.
文章引用:李土英. 具有恐惧效应的Filippov害虫-天敌模型的全局动力学[J]. 应用数学进展, 2025, 14(10): 100-114. https://doi.org/10.12677/AAM.2025.1410424

参考文献

[1] Hamdallah, S.A.A. and Arafa, A.A. (2023) Stability Analysis of Filippov Prey-Predator Model with Fear Effect and Prey Refuge. Journal of Applied Mathematics and Computing, 70, 73-102. [Google Scholar] [CrossRef
[2] Cresswell, W. (2010) Predation in Bird Populations. Journal of Ornithology, 152, 251-263. [Google Scholar] [CrossRef
[3] Zanette, L.Y., White, A.F., Allen, M.C. and Clinchy, M. (2011) Perceived Predation Risk Reduces the Number of Offspring Songbirds Produce per Year. Science, 334, 1398-1401. [Google Scholar] [CrossRef
[4] Wang, X., Zanette, L. and Zou, X. (2016) Modelling the Fear Effect in Predator-Prey Inter- actions. Journal of Mathematical Biology, 73, 1179-1204. [Google Scholar] [CrossRef
[5] Hwang, T. (2004) Uniqueness of Limit Cycles of the Predator-Prey System with Beddington- Deangelis Functional Response. Journal of Mathematical Analysis and Applications, 290, 113- 122. [Google Scholar] [CrossRef
[6] Bhattacharyya, J., Roelke, D.L., Pal, S. and Banerjee, S. (2019) Sliding Mode Dynamics on a Prey-Predator System with Intermittent Harvesting Policy. Nonlinear Dynamics, 98, 1299- 1314. [Google Scholar] [CrossRef
[7] Deng, J., Tang, S. and Lai, C. (2021) Non-smooth Ecological Systems with a Switching Thresh- old Depending on the Pest Density and Its Rate of Change. Nonlinear Analysis: Hybrid Sys- tems, 42, 101094. [Google Scholar] [CrossRef
[8] Cort´es Garcia, C. (2023) Impact of Prey Refuge in a Discontinuous Leslie-Gower Model with Harvesting and Alternative Food for Predators and Linear Functional Response. Mathematics and Computers in Simulation, 206, 147-165. [Google Scholar] [CrossRef
[9] Zhou, W., Zhao, T., Wang, A. and Tang, S. (2024) Bifurcations and Dynamics of a Filippov Epidemic Model with Nonlinear Threshold Control Policy and Medical-Resource Constraints. Chaos, Solitons Fractals, 184, 114992. [Google Scholar] [CrossRef
[10] Li, W. (2024) Bifurcation Analysis of a Filippov Predator-Prey Model with Two Thresholds. Nonlinear Dynamics, 112, 9639-9656. [Google Scholar] [CrossRef
[11] Tang, S., Xiao, Y. and Cheke, R.A. (2008) Multiple Attractors of Host-Parasitoid Models with Integrated Pest Management Strategies: Eradication, Persistence and Outbreak. Theoretical Population Biology, 73, 181-197. [Google Scholar] [CrossRef
[12] Zhu, Y., Liu, L. and Zhang, Z. (2023) Dynamics of a Non-Smooth Pest-Natural Enemy Model with the Threshold Control Strategy. Physica Scripta, 98, 075208. [Google Scholar] [CrossRef
[13] Zhu, Y., Zhang, Z. and Ji, J. (2024) Sliding Dynamics of a Filippov Ecological System with Nonlinear Threshold Control and Pest Resistance. Communications in Nonlinear Science and Numerical Simulation, 135, Article 108052. [Google Scholar] [CrossRef
[14] Filippov, A.F. (1988) Differential Equations with Discontinuous Righthand Sides. Kluwer Academic.
[15] 黄立宏, 王佳伏. 右端不连续微分方程模型及其动力学分析[M]. 北京: 科学出版社, 2021.
[16] 张芷芬. 微分方程定性理论[M]. 北京: 科学出版社, 1985.
[17] 钱祥征, 戴斌祥, 刘开宇. 非线性常微分方程理论方法应用[M]. 长沙: 湖南大学出版社, 2006.
[18] 马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法[M]. 第2版. 北京: 科学出版社, 2015.