[1]
|
Hamdallah, S.A.A. and Arafa, A.A. (2023) Stability Analysis of Filippov Prey-Predator Model with Fear Effect and Prey Refuge. Journal of Applied Mathematics and Computing, 70, 73-102. [Google Scholar] [CrossRef]
|
[2]
|
Cresswell, W. (2010) Predation in Bird Populations. Journal of Ornithology, 152, 251-263. [Google Scholar] [CrossRef]
|
[3]
|
Zanette, L.Y., White, A.F., Allen, M.C. and Clinchy, M. (2011) Perceived Predation Risk Reduces the Number of Offspring Songbirds Produce per Year. Science, 334, 1398-1401. [Google Scholar] [CrossRef]
|
[4]
|
Wang, X., Zanette, L. and Zou, X. (2016) Modelling the Fear Effect in Predator-Prey Inter- actions. Journal of Mathematical Biology, 73, 1179-1204. [Google Scholar] [CrossRef]
|
[5]
|
Hwang, T. (2004) Uniqueness of Limit Cycles of the Predator-Prey System with Beddington- Deangelis Functional Response. Journal of Mathematical Analysis and Applications, 290, 113- 122. [Google Scholar] [CrossRef]
|
[6]
|
Bhattacharyya, J., Roelke, D.L., Pal, S. and Banerjee, S. (2019) Sliding Mode Dynamics on a Prey-Predator System with Intermittent Harvesting Policy. Nonlinear Dynamics, 98, 1299- 1314. [Google Scholar] [CrossRef]
|
[7]
|
Deng, J., Tang, S. and Lai, C. (2021) Non-smooth Ecological Systems with a Switching Thresh- old Depending on the Pest Density and Its Rate of Change. Nonlinear Analysis: Hybrid Sys- tems, 42, 101094. [Google Scholar] [CrossRef]
|
[8]
|
Cort´es Garcia, C. (2023) Impact of Prey Refuge in a Discontinuous Leslie-Gower Model with Harvesting and Alternative Food for Predators and Linear Functional Response. Mathematics and Computers in Simulation, 206, 147-165. [Google Scholar] [CrossRef]
|
[9]
|
Zhou, W., Zhao, T., Wang, A. and Tang, S. (2024) Bifurcations and Dynamics of a Filippov Epidemic Model with Nonlinear Threshold Control Policy and Medical-Resource Constraints. Chaos, Solitons Fractals, 184, 114992. [Google Scholar] [CrossRef]
|
[10]
|
Li, W. (2024) Bifurcation Analysis of a Filippov Predator-Prey Model with Two Thresholds. Nonlinear Dynamics, 112, 9639-9656. [Google Scholar] [CrossRef]
|
[11]
|
Tang, S., Xiao, Y. and Cheke, R.A. (2008) Multiple Attractors of Host-Parasitoid Models with Integrated Pest Management Strategies: Eradication, Persistence and Outbreak. Theoretical Population Biology, 73, 181-197. [Google Scholar] [CrossRef]
|
[12]
|
Zhu, Y., Liu, L. and Zhang, Z. (2023) Dynamics of a Non-Smooth Pest-Natural Enemy Model with the Threshold Control Strategy. Physica Scripta, 98, 075208. [Google Scholar] [CrossRef]
|
[13]
|
Zhu, Y., Zhang, Z. and Ji, J. (2024) Sliding Dynamics of a Filippov Ecological System with Nonlinear Threshold Control and Pest Resistance. Communications in Nonlinear Science and Numerical Simulation, 135, Article 108052. [Google Scholar] [CrossRef]
|
[14]
|
Filippov, A.F. (1988) Differential Equations with Discontinuous Righthand Sides. Kluwer Academic.
|
[15]
|
黄立宏, 王佳伏. 右端不连续微分方程模型及其动力学分析[M]. 北京: 科学出版社, 2021.
|
[16]
|
张芷芬. 微分方程定性理论[M]. 北京: 科学出版社, 1985.
|
[17]
|
钱祥征, 戴斌祥, 刘开宇. 非线性常微分方程理论方法应用[M]. 长沙: 湖南大学出版社, 2006.
|
[18]
|
马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法[M]. 第2版. 北京: 科学出版社, 2015.
|