一类非线性四元数分数阶差分方程解的存在唯一性
Existence and Uniqueness of Solutions for a Class of Nonlinear Quaternion Fractional Di?erence Equations
摘要: 由于四元数代数的非交换性, 所以四元数分数阶差分方程与经典的实、复分数阶差分方程存在着本 质的不同. 本文首先引入了关联辅助函数和部分有界序列空间的定义. 然后, 基于完备空间的定义, 得出了部分有界序列空间的完备性结论. 在此基础上, 基于压缩映射原理给出了一类非线性四元数 分数阶差分方程解的存在唯一性定理, 并给出了解的具体形式. 此外, 给出示例说明了所得结果的 可行性.
Abstract: Due to the non-commutativity of quaternion algebra, quaternion fractional difference equations exhibit fundamental differences compared to classical real and complex frac- tional difference equations. In this thesis, we first introduce the definitions of partial- ly bounded sequence spaces and associated auxiliary functions. Subsequently, based on the definition of complete metric spaces, the completeness of partially bounded sequence spaces is established. Building upon this foundation, the existence and u- niqueness theorem for solutions to a class of nonlinear quaternion fractional difference equations is derived using the contraction mapping principle, along with the explic- it formulation of the solution. Furthermore, an illustrative example is provided to demonstrate the feasibility of the obtained results.
文章引用:谢维玉, 郭丽峰, 李玉莲. 一类非线性四元数分数阶差分方程解的存在唯一性[J]. 应用数学进展, 2025, 14(10): 166-174. https://doi.org/10.12677/AAM.2025.1410429

参考文献

[1] Hamilton, S.W.R. (1853) Lectures on Quaternions. Royal Irish Academy.
[2] Alder, S.L. (1986) Quaternionic Quantum Field Theory. Communications in Mathematical Physics, 104, 611-656. [Google Scholar] [CrossRef
[3] Cheng, D., Kou, K.I. and Xia, Y.H. (2018) A Unified Analysis of Linear Quaternion Dynamic Equations on Time Scales. Journal of Applied Analysis Computation, 8, 172-201. [Google Scholar] [CrossRef
[4] Jahanchahi, C. and Mandic, D.P. (2014) A Class of Quaternion Kalman Filters. IEEE Trans- actions on Neural Networks and Learning Systems, 25, 533-544. [Google Scholar] [CrossRef
[5] Wang, C. and Agarwal, R.P. (2022) Dynamic Equations and Almost Periodic Fuzzy Functions on Time Scales. In: Synthesis Lectures on Mathematics & Statistics, Springer. [Google Scholar] [CrossRef
[6] Colombo, F. and Sabadini, I. (2011) The Quaternionic Evolution Operator. Advances in Math- ematics, 227, 1772-1805. [Google Scholar] [CrossRef
[7] Colombo, F. and Gantner, J. (2019) Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes. In: Operator Theory: Advances and Applications, Vol. 274, Birkhäuser. [Google Scholar] [CrossRef
[8] Saber, N.E. (1995) An Introduction to Differences Equations. Springer.
[9] Agarwal, R.P. (1992) Difference Equations and Inequalities. Marcel Dekker.
[10] Agarwal, R.P. and Wong, J.K. (1997) Advanced Topics in Difference Equations. Kluwer Aca- demic Publishers.
[11] Samko, S.G., Kilbas, A.A. and Maritchev, O.I. (1987) Integrals and Derivatives of the Frac- tional Order and Some of Their Applications. Nauka i Tekhnika.
[12] Zheng, Z.X. (2008) On the Developments and Applications of Fractional Differential Equations. Journal of Xuzhou Normal University (Natural Science Edition), 26, 1-10.
[13] Lakshmikantham, V. and Vatsala, A.S. (2008) Basic Theory of Fractional Differential Equa- tions. Nonlinear Analysis: Theory, Methods & Applications, 69, 2677-2682. [Google Scholar] [CrossRef
[14] Wang, C., Xie, W. and Agarwal, R.P. (2024) Quaternion Fractional Difference with Quater- nionic Fractional Order and Applications to Fractional Difference Equation. Analele Univer- sitatii “Ovidius” Constanta—Seria Matematica, 32, 271-304. [Google Scholar] [CrossRef
[15] 孙炯, 贺飞, 郝晓玲, 等. 泛函分析 [M]. 第 2 版. 北京: 高等教育出版社, 2018.