喷墨打印控制系统的现状和趋势
Research Status and Development Trends of Inkjet Printing Control System
DOI: 10.12677/dsc.2025.144043, PDF,    科研立项经费支持
作者: 王家奇, 陆利坤:北京印刷学院信息工程学院,北京
关键词: 喷墨打印控制系统热泡式喷墨压电式喷墨模拟仿真 Inkjet Printing Control System Thermal Inkjet Piezoelectric Inkjet Simulation
摘要: 喷墨打印技术作为数字化制造与精密加工领域的关键技术,在工业制造、增材制造、电子封装、生命科学等多个前沿领域具有广泛的应用前景。本文综述了喷墨打印控制系统的研究现状与发展趋势,首先概述了热泡式和压电式喷墨打印控制的核心理论,然后对喷墨打印控制领域的国内外现状进行了分析。接着,国内在热泡喷墨芯片设计和压电喷墨供墨控制技术等方面的研究取得了一定的成果。国外则更加提升设备的稳定性与适应性,同时注重喷墨打印技术在制药等领域的应用拓展。此外,本文总结了喷墨打印控制研究的主要方法,包括模拟仿真和控制系统设计等。最后,本文针对当前存在的系统整体性研究不足、实验与仿真结合不紧密、工业化应用探索不够等挑战进行了展望,主要有多喷头协同控制、自适应控制算法的开发以及新型功能材料的适应性喷墨控制等。
Abstract: As a key technology in digital manufacturing and precision processing, inkjet printing holds broad application prospects in various cutting-edge fields such as industrial manufacturing, additive manufacturing, electronic packaging, and life sciences. This paper reviews the research status and development trends of inkjet printing control systems. It begins with an overview of the core theories governing thermal and piezoelectric inkjet printing control, followed by an analysis of the current state of research both domestically and internationally. Domestically, notable progress has been made in areas such as thermal inkjet chip design and piezoelectric inkjet supply control technology. Internationally, efforts are more focused on enhancing the stability and adaptability of equipment, alongside expanding applications in fields like pharmaceuticals. Furthermore, this paper summarizes the main research methods in inkjet printing control, including simulation and control system design. Finally, it outlines challenges such as insufficient holistic system research, weak integration of experimental and simulation studies, and limited exploration in industrial applications. Promising future directions include multi-printhead cooperative control, development of adaptive control algorithms, and inkjet control strategies for novel functional materials.
文章引用:王家奇, 陆利坤. 喷墨打印控制系统的现状和趋势[J]. 动力系统与控制, 2025, 14(4): 428-439. https://doi.org/10.12677/dsc.2025.144043

参考文献

[1] 彭熙舜. 基于MEMS的喷墨微流道设计与控制研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2023.
[2] Lee, J., Choo, S., Ju, H., Hong, J., Yang, S.E., Kim, F., et al. (2021) Doping‐Induced Viscoelasticity in PbTe Thermoelectric Inks for 3D Printing of Power‐Generating Tubes. Advanced Energy Materials, 11, Article ID: 2100190.
[3] Bandari, S., Nyavanandi, D., Dumpa, N. and Repka, M.A. (2021) Coupling Hot Melt Extrusion and Fused Deposition Modeling: Critical Properties for Successful Performance. Advanced Drug Delivery Reviews, 172, 52-63. [Google Scholar] [CrossRef] [PubMed]
[4] Xu, K., Li, D., Shang, E. and Liu, Y. (2022) A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity. Polymers, 14, Article 1323. [Google Scholar] [CrossRef] [PubMed]
[5] 牛志飞. 面向压电喷墨打印的供墨控制技术研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2023.
[6] 王丽坤. 常见喷墨打印头的分类和性能[J]. 丝网印刷, 2015(7): 39-41.
[7] 苏昕, 武秋敏. 压电喷墨打印头几何参数对墨滴喷射的影响及问题解决[J]. 印刷工业, 2021(5): 51-54.
[8] Wu, D., Yao, B., Wu, S., Hingorani, H., Cui, Q., Hua, M., et al. (2022) Room‐Temperature Annealing‐Free Gold Printing via Anion‐Assisted Photochemical Deposition. Advanced Materials, 34, Article ID: 2201772. [Google Scholar] [CrossRef] [PubMed]
[9] Andrew, C., Haley, R., Lin, D., Zhe, X., John, X.J.Z., et al. (2020) Method for Inkjet-Printing PEDOT: PSS Polymer Electrode Arrays on Piezoelectric PVDF-TrFE Fibers. 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, 16-19 August 2020, 1-4.
[10] Li, Q., Yu, Y. and Tang, S. (2020) Multiphase Lattice Boltzmann Method and Its Applications in Phase-Change Heat Transfer. Chinese Science Bulletin, 65, 1677-1693. [Google Scholar] [CrossRef
[11] Zhang, C., Lei, D., Xie, C., Hang, X., He, C. and Jiang, H. (2021) Piezo‐Photocatalysis over Metal-Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect. Advanced Materials, 33, Article ID: 2106308. [Google Scholar] [CrossRef] [PubMed]
[12] Chen, X. and Sun, Z. (2022) Plasma Kernel Model and Energy Transformation Characteristic of Plasma Synthetic Jet Actuator. Physics of Fluids, 34, Article ID: 126104. [Google Scholar] [CrossRef
[13] Lee, H.M. and Lee, J.S. (2022) Effects of Heat Transfer on Particle Suspended Drop-on-Demand Inkjet Printing Using Lattice Boltzmann Method. Applied Thermal Engineering, 213, Article ID: 118637. [Google Scholar] [CrossRef
[14] 王晓红, 吕兆锋, 孙平. 喷墨数字印刷质量的闭环检测与色彩控制系统设计[J]. 包装工程, 2012, 33(13): 10-13.
[15] 罗庆生, 韩宝玲, 吴瑞松. 新型多功能喷墨编码机控制电路设计[J]. 印刷技术, 1999(6): 38-40.
[16] Yang, P., Zhang, X. and Chen, J. (2021) Design of Control System for Inkjet Printer. Journal of Physics: Conference Series, 2037, Article ID: 012056. [Google Scholar] [CrossRef
[17] 张洋. 基于嵌入式的供墨系统控制与设计[D]: [硕士学位论文]. 北京: 北京印刷学院, 2022.
[18] 王婷, 李欢. 基于MFC + STM32的数控裁床喷墨笔绘切割控制系统设计[J]. 制造技术与机床, 2022(2): 86-89.
[19] 汪邵华. SG1024喷墨头的驱动控制系统设计[D]: [硕士学位论文]. 南京: 南京理工大学, 2021.
[20] 张鹏. 基于FPGA的压电喷墨打印控制系统设计[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2019.
[21] 曹范亮. 数码喷墨印刷供墨系统硬件及软件设计与分析[J]. 今日印刷, 2018(11): 54-58.
[22] 王玉青. 基于FPGA的喷墨打印系统设计与实现[J]. 电子制作, 2015(23): 73-74.
[23] Kiefer, O. and Breitkreutz, J. (2020) Comparative Investigations on Key Factors and Print Head Designs for Pharmaceutical Inkjet Printing. International Journal of Pharmaceutics, 586, Article ID: 119561. [Google Scholar] [CrossRef] [PubMed]
[24] Cader, H.K., Rance, G.A., Alexander, M.R., Gonçalves, A.D., Roberts, C.J., Tuck, C.J., et al. (2019) Water-Based 3D Inkjet Printing of an Oral Pharmaceutical Dosage Form. International Journal of Pharmaceutics, 564, 359-368. [Google Scholar] [CrossRef] [PubMed]
[25] Corrall, J. (2017) Konica Minolta’s Inkjet Printhead Technology. In: Zapka, W., Ed., Handbook of Industrial Inkjet Printing: A Full System Approach, Wiley-VCH, 253-284.
[26] Thabet, Y., Lunter, D. and Breitkreutz, J. (2018) Continuous Inkjet Printing of Enalapril Maleate onto Orodispersible Film Formulations. International Journal of Pharmaceutics, 546, 180-187. [Google Scholar] [CrossRef] [PubMed]
[27] Hoath, S.D. (2016) Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets. John Wiley & Sons.
[28] Thabet, Y., Sibanc, R. and Breitkreutz, J. (2018) Printing Pharmaceuticals by Inkjet Technology: Proof of Concept for Stand-Alone and Continuous In-Line Printing on Orodispersible Films. Journal of Manufacturing Processes, 35, 205-215. [Google Scholar] [CrossRef
[29] Wickström, H., Palo, M., Rijckaert, K., Kolakovic, R., Nyman, J.O., Määttänen, A., et al. (2015) Improvement of Dissolution Rate of Indomethacin by Inkjet Printing. European Journal of Pharmaceutical Sciences, 75, 91-100. [Google Scholar] [CrossRef] [PubMed]
[30] 孙玉满, 吕赐兴, 张磊, 等. 面向数字喷墨打印工艺的Li4Ti5O12薄膜电极制备控制系统设计[J]. 制造业自动化, 2014, 36(20): 144-147, 152.
[31] 任晓飞. 喷墨打印装置中液滴喷射过程的仿真研究[J]. 计算机时代, 2023(11): 127-130.
[32] Sang, R., Wu, Z., Fan, Z., Yang, S., et al. (2022) Method and Analysis of UV Inkjet Printing 3D Simulation of Wood Texture Using Image Modeling. Journal of Forestry Engineering, 7, 187-193.
[33] Yin, Z., Su, R., Wang, Q., Chen, Q., Hong, Y., et al. (2022) Phase Field Dynamics Simulation of Single Droplet Impacting Curved Wall Surface. Journal of Longdong University, 33, 63-67.
[34] Piovarči, M., Foshey, M., Xu, J., Erps, T., Babaei, V., Didyk, P., et al. (2022) Closed-Loop Control of Direct Ink Writing via Reinforcement Learning. ACM Transactions on Graphics, 41, 1-10. [Google Scholar] [CrossRef
[35] Wright, W.J., Darville, J., Celik, N., Koerner, H. and Celik, E. (2022) In-Situ Optimization of Thermoset Composite Additive Manufacturing via Deep Learning and Computer Vision. Additive Manufacturing, 58, Article ID: 102985. [Google Scholar] [CrossRef
[36] Cavone, G., Bozza, A., Carli, R. and Dotoli, M. (2022) MPC-Based Process Control of Deep Drawing: An Industry 4.0 Case Study in Automotive. IEEE Transactions on Automation Science and Engineering, 19, 1586-1598. [Google Scholar] [CrossRef