光滑度量测度空间上方程△p,fu + aur|?u|s=0解的线性化算子处理
Treatment of the Linearized Operator for Solutions to the Equation △p,fu + aur|?u|s=0 on Smooth Metric Measure Spaces
DOI: 10.12677/PM.2025.1511263, PDF,    科研立项经费支持
作者: 武春雨, 韩菲*:新疆师范大学数学科学学院,新疆乌鲁木齐;吴杨:长春师范大学数学学院,吉林长春
关键词: 线性化算子加权p拉普拉斯算子光滑度量测度空间Linearized Operator Weighted p-Laplace Operator Smooth Metric Measure Spaces
摘要: 在这篇论文中,我们考虑光滑度量测度空间上的加权p拉普拉斯方程△p,fu + aur|∇u|s=0,其中p > 1,a,r和s为常数,且加权p拉普拉斯算子定义为△p,fu= ef div (e-f|∇u|p-2∇u)。随后,我们利用不等式处理此方程解的线性化算子。在关于a,p,r和 s的一些假设条件下,我们导出了此方程可用于做梯度估计和刘维尔型定理的线性化算子。记∇,△和Hess 分别为梯度、拉普拉斯和海森算子,dυ为黎曼体积测度。
Abstract: In this paper, we consider the weighted p-Laplace equation △p,fu + aur|∇u|s=0 on smooth metric measure spaces, wherep > 1, and a, r, s are constants, with the weighted p-Laplace operator defined as △p,fu= ef div (e-f|∇u|p-2∇u). Subsequently, we analyze the linearized operator for solutions to this equation using inequality techniques. Under certain assumptions on a, p, r, and s, we derive a linearized operator for this equation that can be applied to gradient estimates and Liouville-type theorems. Let ∇, △, and Hess denote the gradient, Laplacian, and Hessian operators, respectively, and let dv represent the Riemannian volume measure.
文章引用:武春雨, 韩菲, 吴杨. 光滑度量测度空间上方程△p,fu + aur|?u|s=0解的线性化算子处理[J]. 理论数学, 2025, 15(11): 1-10. https://doi.org/10.12677/PM.2025.1511263

参考文献

[1] Gidas, B. and Spruck, J. (1981) Global and Local Behavior of Positive Solutions of Nonlinear Elliptic Equations. Communications on Pure and Applied Mathematics, 34, 525-598.[CrossRef
[2] Li, P. and Yau, S.T. (1986) On the Parabolic Kernel of the Schrödinger Operator. Acta Mathematica, 156, 153-201. [Google Scholar] [CrossRef
[3] Peng, B., Wang, Y. and Wei, G. (2020) Gradient Estimates for Δu + aup+1 = 0 and Liouville Theorems. arXiv:2009.14566
[4] Sung, C.A. and Wang, J. (2014) Sharp Gradient Estimate and Spectral Rigidity for p- Laplacian. Mathematical Research Letters, 21, 885-904.[CrossRef
[5] Wang, X. and Zhang, L. (2011) Local Gradient Estimate for p-Harmonic Functions on Riemannian Manifolds. Communications in Analysis and Geometry, 19, 759-771.[CrossRef
[6] Yau, S. (1975) Harmonic Functions on Complete Riemannian Manifolds. Communications on Pure and Applied Mathematics, 28, 201-228. [Google Scholar] [CrossRef
[7] Zhao, L. and Yang, D. (2018) Gradient Estimates for the p-Laplacian Lichnerowicz Equation on Smooth Metric Measure Spaces. Proceedings of the American Mathematical Society, 146, 5451-5461.[CrossRef
[8] Cheng, S.Y. and Yau, S.T. (1975) Differential Equations on Riemannian Manifolds and Their Geometric Applications. Communications on Pure and Applied Mathematics, 28, 333-354.[CrossRef
[9] Kotschwar, B. and Ni, L. (2009) Local Gradient Estimates of p-Harmonic Functions, 1/h-Flow, and an Entropy Formula. Annales scientifiques de l’École normale supérieure, 42, 1-36.[CrossRef
[10] He, J., Wang, Y.D. and Wei, G.D. (2023) Gradient Estimates for Δpu+aυq = 0 on a Complete Riemannian Manifold and Liouville Type Theorems.[CrossRef