光滑度量测度空间上方程△p,fu + aur|?u|s=0解的线性化算子处理
Treatment of the Linearized Operator for Solutions to the Equation △p,fu + aur|?u|s=0 on Smooth Metric Measure Spaces
摘要: 在这篇论文中,我们考虑光滑度量测度空间上的加权p拉普拉斯方程△
p,fu + au
r|∇u|
s=0,其中p > 1,a,r和s为常数,且加权p拉普拉斯算子定义为△
p,fu= e
f div (e
-f|∇u|
p-
2∇u)。随后,我们利用不等式处理此方程解的线性化算子。在关于a,p,r和 s的一些假设条件下,我们导出了此方程可用于做梯度估计和刘维尔型定理的线性化算子。记∇,△和Hess 分别为梯度、拉普拉斯和海森算子,dυ为黎曼体积测度。
Abstract: In this paper, we consider the weighted p-Laplace equation △p,fu + aur|∇u|s=0 on smooth metric measure spaces, wherep > 1, and a, r, s are constants, with the weighted p-Laplace operator defined as
△p,fu= ef div (e-f|∇u|p-2∇u). Subsequently, we analyze the linearized operator for solutions to this equation using inequality techniques. Under certain assumptions on a, p, r, and s, we derive a linearized operator for this equation that can be applied to gradient estimates and Liouville-type theorems. Let
∇, △, and Hess denote the gradient, Laplacian, and Hessian operators, respectively, and let dv represent the Riemannian volume measure.
参考文献
|
[1]
|
Gidas, B. and Spruck, J. (1981) Global and Local Behavior of Positive Solutions of Nonlinear
Elliptic Equations. Communications on Pure and Applied Mathematics, 34, 525-598.[CrossRef]
|
|
[2]
|
Li, P. and Yau, S.T. (1986) On the Parabolic Kernel of the Schrödinger Operator. Acta Mathematica,
156, 153-201. [Google Scholar] [CrossRef]
|
|
[3]
|
Peng, B., Wang, Y. and Wei, G. (2020) Gradient Estimates for Δu + aup+1 = 0 and Liouville
Theorems. arXiv:2009.14566
|
|
[4]
|
Sung, C.A. and Wang, J. (2014) Sharp Gradient Estimate and Spectral Rigidity for p-
Laplacian. Mathematical Research Letters, 21, 885-904.[CrossRef]
|
|
[5]
|
Wang, X. and Zhang, L. (2011) Local Gradient Estimate for p-Harmonic Functions on Riemannian
Manifolds. Communications in Analysis and Geometry, 19, 759-771.[CrossRef]
|
|
[6]
|
Yau, S. (1975) Harmonic Functions on Complete Riemannian Manifolds. Communications on
Pure and Applied Mathematics, 28, 201-228. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhao, L. and Yang, D. (2018) Gradient Estimates for the p-Laplacian Lichnerowicz Equation
on Smooth Metric Measure Spaces. Proceedings of the American Mathematical Society, 146,
5451-5461.[CrossRef]
|
|
[8]
|
Cheng, S.Y. and Yau, S.T. (1975) Differential Equations on Riemannian Manifolds and Their
Geometric Applications. Communications on Pure and Applied Mathematics, 28, 333-354.[CrossRef]
|
|
[9]
|
Kotschwar, B. and Ni, L. (2009) Local Gradient Estimates of p-Harmonic Functions, 1/h-Flow,
and an Entropy Formula. Annales scientifiques de l’École normale supérieure, 42, 1-36.[CrossRef]
|
|
[10]
|
He, J., Wang, Y.D. and Wei, G.D. (2023) Gradient Estimates for Δpu+aυq = 0 on a Complete
Riemannian Manifold and Liouville Type Theorems.[CrossRef]
|