一类Moran测度的傅里叶变换的衰减率
A Class of Decay Rate of FourierTransform of Moran Measure
DOI: 10.12677/PM.2025.1511265, PDF,   
作者: 尉敬惠:长沙理工大学数学与统计学院,湖南长沙
关键词: Moran测度傅里叶变换衰减率Moran Measures Fourier Transform Decay Rate
摘要: 设0<ρ<1,其中ρ=q/p, gcd(p,q)=1且q > 1,{Dn}n=1是有界且满足∩n=1(Dn-Dn)\{0}≠∅.在这篇论文中,我们研究ℝ上具有紧支撑的Borel概率测度
Abstract: μρ,DnρD1ρ2D2*…,的傅里叶变换的衰减率,结果表明,满足以上条件的Moran测度μρ,Dn。的傅里叶变换的衰减率是对数形式的。Let 0<ρ<1,where ρ=q/p, gcd(p,q)=1 andq > 1, {Dn}n=1 is bounded and satisfy ∩n=1(Dn-Dn)\{0}≠∅. In this paper, we study the decay rate of Fourier transform of a Borel probability measure with compact support on ℝ μρ,DnρD1ρ2D2*…. It is shown that a class of the decay rate of the Fourier transform of Moran measure μρ,Dn is logarithmic.
文章引用:尉敬惠. 一类Moran测度的傅里叶变换的衰减率[J]. 理论数学, 2025, 15(11): 17-23. https://doi.org/10.12677/PM.2025.1511265

参考文献

[1] Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group The- oretic Problem. Journal of Functional Analysis, 16, 101-121.[CrossRef
[2] Tao, T. (2004) Fuglede's Conjecture Is False in 5 and Higher Dimensions. Mathematical Re- search Letters, 11, 251-258. [Google Scholar] [CrossRef
[3] Farkas, B., Matolcsi, M. and Mora, P. (2006) On Fuglede's Conjecture and the Existence of Universal Spectra. Journal of Fourier Analysis and Applications, 12, 483-494.[CrossRef
[4] Kolountzakis, M.N. and Matolcsi, M. (2006) Tiles with No Spectra. Forum Mathematicum, 18, 519-528. [Google Scholar] [CrossRef
[5] Lev, N. and Matolcsi, M. (2022) The Fuglede Conjecture for Convex Domains Is True in All Dimensions. Acta Mathematica, 228, 385-420.[CrossRef
[6] He, X., Lai, C. and Lau, K. (2013) Exponential spectra in L2(μ). Applied and Computational Harmonic Analysis, 34, 327-338. [Google Scholar] [CrossRef
[7] Dutkay, D.E. and Lai, C. (2014) Uniformity of Measures with Fourier Frames. Advances in Mathematics, 252, 684-707. [Google Scholar] [CrossRef
[8] Lai, C. (2011) On Fourier Frame of Absolutely Continuous Measures. Journal of Functional Analysis, 261, 2877-2889. [Google Scholar] [CrossRef
[9] Fan, A., Fan, S., Liao, L. and Shi, R. (2019) Fuglede's Conjecture Holds in qp. Mathematische Annalen, 375, 315-341. [Google Scholar] [CrossRef
[10] Malikiosis, R.D. and Kolountzakis, M.N. (2018) Fuglede's Conjecture on Cyclic Groups of Order pnq. Discrete Analysis.[CrossRef
[11] Shi, R.X. (2019) Fuglede's Conjecture Holds on Cyclic Groups Zpqr. Discrete Analysis, 14, 14 p.
[12] Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractal L2-Spaces. Journal d'Analyse Mathematique, 75, 185-228. [Google Scholar] [CrossRef
[13] GAO, X. and MA, J. (2017) Decay Rate of Fourier Transforms of Some Self-Similar Measures. Acta Mathematica Scientia, 37, 1607-1618. [Google Scholar] [CrossRef
[14] Strichartz, R.S. (2000) Mock Fourier Series and Transforms Associated with Certain Cantor Measures. Journal d'Analyse Mathematique, 81, 209-238.[CrossRef
[15] Feng, D., Wen, Z. and Wu, J. (1997) Some Dimensional Results for Homogeneous Moran Sets. Science in China Series A: Mathematics, 40, 475-482. [Google Scholar] [CrossRef
[16] An, L. and He, X. (2014) A Class of Spectral Moran Measures. Journal of Functional Analysis, 266, 343-354. [Google Scholar] [CrossRef
[17] An, L., Fu, X. and Lai, C. (2019) On Spectral Cantor-Moran Measures and a Variant of Bourgain's Sum of Sine Problem. Advances in Mathematics, 349, 84-124.[CrossRef
[18] An, L. andWang, C. (2021) On Self-Similar Spectral Measures. Journal of Functional Analysis, 280, Article 108821. [Google Scholar] [CrossRef