|
[1]
|
Fuglede, B. (1974) Commuting Self-Adjoint Partial Differential Operators and a Group The-
oretic Problem. Journal of Functional Analysis, 16, 101-121.[CrossRef]
|
|
[2]
|
Tao, T. (2004) Fuglede's Conjecture Is False in 5 and Higher Dimensions. Mathematical Re-
search Letters, 11, 251-258. [Google Scholar] [CrossRef]
|
|
[3]
|
Farkas, B., Matolcsi, M. and Mora, P. (2006) On Fuglede's Conjecture and the Existence of
Universal Spectra. Journal of Fourier Analysis and Applications, 12, 483-494.[CrossRef]
|
|
[4]
|
Kolountzakis, M.N. and Matolcsi, M. (2006) Tiles with No Spectra. Forum Mathematicum,
18, 519-528. [Google Scholar] [CrossRef]
|
|
[5]
|
Lev, N. and Matolcsi, M. (2022) The Fuglede Conjecture for Convex Domains Is True in All
Dimensions. Acta Mathematica, 228, 385-420.[CrossRef]
|
|
[6]
|
He, X., Lai, C. and Lau, K. (2013) Exponential spectra in L2(μ). Applied and Computational
Harmonic Analysis, 34, 327-338. [Google Scholar] [CrossRef]
|
|
[7]
|
Dutkay, D.E. and Lai, C. (2014) Uniformity of Measures with Fourier Frames. Advances in
Mathematics, 252, 684-707. [Google Scholar] [CrossRef]
|
|
[8]
|
Lai, C. (2011) On Fourier Frame of Absolutely Continuous Measures. Journal of Functional
Analysis, 261, 2877-2889. [Google Scholar] [CrossRef]
|
|
[9]
|
Fan, A., Fan, S., Liao, L. and Shi, R. (2019) Fuglede's Conjecture Holds in qp. Mathematische
Annalen, 375, 315-341. [Google Scholar] [CrossRef]
|
|
[10]
|
Malikiosis, R.D. and Kolountzakis, M.N. (2018) Fuglede's Conjecture on Cyclic Groups of
Order pnq. Discrete Analysis.[CrossRef]
|
|
[11]
|
Shi, R.X. (2019) Fuglede's Conjecture Holds on Cyclic Groups Zpqr. Discrete Analysis, 14, 14
p.
|
|
[12]
|
Jorgensen, P.E.T. and Pedersen, S. (1998) Dense Analytic Subspaces in Fractal L2-Spaces.
Journal d'Analyse Mathematique, 75, 185-228. [Google Scholar] [CrossRef]
|
|
[13]
|
GAO, X. and MA, J. (2017) Decay Rate of Fourier Transforms of Some Self-Similar Measures.
Acta Mathematica Scientia, 37, 1607-1618. [Google Scholar] [CrossRef]
|
|
[14]
|
Strichartz, R.S. (2000) Mock Fourier Series and Transforms Associated with Certain Cantor
Measures. Journal d'Analyse Mathematique, 81, 209-238.[CrossRef]
|
|
[15]
|
Feng, D., Wen, Z. and Wu, J. (1997) Some Dimensional Results for Homogeneous Moran Sets.
Science in China Series A: Mathematics, 40, 475-482. [Google Scholar] [CrossRef]
|
|
[16]
|
An, L. and He, X. (2014) A Class of Spectral Moran Measures. Journal of Functional Analysis,
266, 343-354. [Google Scholar] [CrossRef]
|
|
[17]
|
An, L., Fu, X. and Lai, C. (2019) On Spectral Cantor-Moran Measures and a Variant of
Bourgain's Sum of Sine Problem. Advances in Mathematics, 349, 84-124.[CrossRef]
|
|
[18]
|
An, L. andWang, C. (2021) On Self-Similar Spectral Measures. Journal of Functional Analysis,
280, Article 108821. [Google Scholar] [CrossRef]
|